Question Number 66549 by aditya@345 last updated on 17/Aug/19 $$\frac{\mathrm{n}^{\mathrm{2}} !}{\left(\mathrm{n}!\right)^{\mathrm{n}} }=\mathrm{natural}\:\mathrm{number}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 1012 by rpatle69@gmail.com last updated on 13/May/15 $${find}\:{the}\:{equation}\:{of}\:{circle}\:{whose} \\ $$$${parametric}\:{form}\:{is}\:{given}\:{by}\: \\ $$$${x}=\mathrm{3cos}\:\theta+\mathrm{5}\:{and}\:{y}=\:\mathrm{3sin}\:\theta−\mathrm{7}\:{and} \\ $$$${second}\:{part}\:{is}\:{x}=\mathrm{4cos}\:\theta−\mathrm{3}\:{and} \\ $$$${y}=\mathrm{4sin}\:\theta+\mathrm{4}.\:{find}\:{centre}\:{and}\: \\ $$$${radius}\:{of}\:{above}\:{circle}. \\ $$$$ \\ $$$$ \\…
Question Number 132081 by liberty last updated on 11/Feb/21 $$\mathrm{Prove}\:\mathrm{tan}\:\left(\mathrm{A}+\mathrm{B}\right)−\mathrm{tan}\:\mathrm{A}=\:\frac{\mathrm{sin}\:\mathrm{B}}{\mathrm{cos}\:\mathrm{A}\:\mathrm{cos}\:\left(\mathrm{A}+\mathrm{B}\right)} \\ $$ Answered by rs4089 last updated on 11/Feb/21 $${tan}\left({A}+{B}\right)−{tanA} \\ $$$$\frac{{sin}\left({A}+{B}\right)}{{cos}\left({A}+{B}\right)}−\frac{{sinA}}{{cosA}} \\ $$$$\frac{{sin}\left({A}+{B}\right).{cosA}−{sinA}.{cos}\left({A}+{B}\right)}{{cos}\left({A}+{B}\right).{cosA}} \\…
Question Number 66546 by Sayantan chakraborty last updated on 17/Aug/19 Commented by Sayantan chakraborty last updated on 17/Aug/19 $$\mathrm{urgent}\:\mathrm{need} \\ $$ Commented by ~ À…
Question Number 66544 by naka3546 last updated on 17/Aug/19 $${Find}\:\:{a},\:{b},\:{c}\:\:{which}\:\:{fulfill}\:\:\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{x}\left({a}\:+\:{b}\:\mathrm{cos}\:{x}\right)\:−\:{c}\:\mathrm{sin}\:{x}}{{x}^{\mathrm{5}} }\:\:=\:\:\mathrm{1} \\ $$ Answered by Tanmay chaudhury last updated on 17/Aug/19 $$\underset{{x}\rightarrow\mathrm{0}}…
Question Number 132082 by liberty last updated on 11/Feb/21 $$\:\mathrm{Solve}\:\int\:\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:?\: \\ $$ Answered by EDWIN88 last updated on 11/Feb/21 $$\mathrm{Ostrogradski}\:\mathrm{method} \\ $$$$\mathrm{Consider}\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{ax}^{\mathrm{3}} +\mathrm{bx}}{\left(\mathrm{x}^{\mathrm{2}}…
Question Number 1007 by tera last updated on 13/May/15 $$\left[{x}−\mathrm{2}\right]>−\mathrm{2}\:.\:\:{x}=….. \\ $$ Answered by prakash jain last updated on 13/May/15 $$\left({x}−\mathrm{2}\right)>−\mathrm{2}\Rightarrow{x}−\mathrm{2}+\mathrm{2}>−\mathrm{2}+\mathrm{2}\Rightarrow{x}>\mathrm{0} \\ $$ Terms of…
Question Number 132076 by liberty last updated on 11/Feb/21 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−\mathrm{1}/\mathrm{2}} {dt}. \\ $$$$\mathrm{If}\:\mathrm{h}\left({x}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{f}\left({x}\right)\:\mathrm{and}\:\mathrm{h}'\left({x}\right) \\ $$$$\mathrm{is}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{h}\left({x}\right).\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{h}''\left({x}\right)}{\left(\mathrm{h}\left(\mathrm{x}\right)\right)^{\mathrm{2}} }\:. \\ $$$$ \\ $$…
Question Number 66543 by hmamarques1994@gmail.com last updated on 17/Aug/19 $$\:\mathrm{3}^{\boldsymbol{{x}}} =\mathrm{3}\boldsymbol{{x}} \\ $$$$\: \\ $$$$\:\boldsymbol{{x}}=? \\ $$ Commented by gunawan last updated on 17/Aug/19 $${x}=\mathrm{1}…
Question Number 132079 by liberty last updated on 11/Feb/21 $$\mathrm{If}\:\mathrm{L}\:=\:\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}−\mathrm{tan}\:\mathrm{x}}{\mathrm{cos}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)} \\ $$$$\mathrm{then}\:\frac{\mathrm{L}}{\mathrm{4}}\:=? \\ $$ Answered by EDWIN88 last updated on 11/Feb/21 $$\:\mathrm{L}=\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\mathrm{tan}\:\mathrm{x}\left(\mathrm{tan}\:\mathrm{x}+\mathrm{1}\right)\left(\mathrm{tan}\:\mathrm{x}−\mathrm{1}\right)}{\mathrm{cos}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)}…