Question Number 131603 by rs4089 last updated on 06/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66064 by mathmax by abdo last updated on 08/Aug/19 $${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:{cos}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right){dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 529 by 8905571695 last updated on 25/Jan/15 $$ \\ $$ Answered by prakash jain last updated on 25/Jan/15 $$\mathrm{blank} \\ $$ Terms of…
Question Number 131602 by rs4089 last updated on 06/Feb/21 Answered by mnjuly1970 last updated on 06/Feb/21 $$\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{8}} \\ $$ Answered by mathmax by abdo last…
Question Number 66065 by mathmax by abdo last updated on 08/Aug/19 $${find}\:{the}\:{value}\:{of}\:{U}_{{n}} =\int_{−\infty} ^{+\infty} {e}^{−{nx}^{\mathrm{2}} } {sin}\left({x}^{\mathrm{2}} −\mathrm{2}{x}\right){dx} \\ $$$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \:{and}\:\Sigma{e}^{−{n}^{\mathrm{2}} } {U}_{{n}} \\ $$…
Question Number 66062 by mathmax by abdo last updated on 08/Aug/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{ch}\left({t}\right)+{xsh}\left({t}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left({ch}\left({t}\right)+{xsh}\left({t}\right)\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{ch}\left({t}\right)+\mathrm{3}{sh}\left({t}\right)}\:{and}\:\int_{\mathrm{0}}…
Question Number 66063 by mathmax by abdo last updated on 08/Aug/19 $${let}\:\:\:{x}^{\mathrm{2}} −{x}\:+{lnx}\:=\mathrm{0}\:\:\:\:\:{by}\:{using}\:{newton}\:{method}\:{find} \\ $$$${a}\:{approximate}\:{value}\:{of}\:{the}\:{roots}\:{of}\:{this}\:{equation}. \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 131599 by ajfour last updated on 06/Feb/21 Commented by ajfour last updated on 06/Feb/21 $${Find}\:{coordinates}\:{of}\:{P},\:{in}\:{terms} \\ $$$${of}\:{a},{b},\:{and}\:{R}. \\ $$ Answered by mr W…
Question Number 66060 by mathmax by abdo last updated on 08/Aug/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{{x}+{tant}}\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{aexplicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{also}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{dt}}{\left({x}+{tant}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){give}\:{f}^{\left({n}\right)} \left({x}\right){at}\:{form}\:{of}\:{integral} \\…
Question Number 66061 by mathmax by abdo last updated on 08/Aug/19 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{sinx}}{\mathrm{1}+{te}^{−{x}^{\mathrm{2}} } }{dx}\:\:\:\:{with}\:\mid{t}\mid<\mathrm{1} \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$ Terms of Service Privacy Policy…