Question Number 66520 by mhmd last updated on 16/Aug/19 $${find}\:{the}\:{length}\:{r}=\mathrm{2}/\mathrm{1}−{cos}\theta\:\:\:\:\:\:\:\:\:{if}\:\theta\:{between}\:{pi}/\mathrm{2}\:{to}\:{pi} \\ $$ Commented by kaivan.ahmadi last updated on 16/Aug/19 $${l}=\int_{\frac{\pi}{\mathrm{2}}} ^{\pi} \sqrt{\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }{d}\theta \\…
Question Number 985 by tera last updated on 13/May/15 $${jika}\:{fungsi}\:{f}\left({x}\right)=\:{px}^{\mathrm{2}} −\left({p}+\mathrm{1}\right){x}−\mathrm{6} \\ $$$${mencapai}\:{nilai}\:{tertingi}\:{untuk}\: \\ $$$${x}=−\mathrm{1}.\:{maka}\:{nilai}\:{p}=…..\mho \\ $$$$ \\ $$ Answered by prakash jain last updated…
Question Number 984 by 112358 last updated on 13/May/15 $${Show}\:{that}\:\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{3}{x}−\mathrm{1}}>\mathrm{1}\:{given}\:{that}\:{x}>\frac{\mathrm{1}}{\mathrm{3}}\:. \\ $$ Commented by prakash jain last updated on 13/May/15 $$\mathrm{For}\:{x}=\mathrm{1}\:\mathrm{LHS}=\frac{\mathrm{1}×\mathrm{2}}{\mathrm{2}}=\mathrm{1}\ngtr\mathrm{1} \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{inequality}\:\mathrm{should}\:\mathrm{be} \\ $$$$\frac{{x}\left({x}+\mathrm{1}\right)}{\mathrm{3}{x}−\mathrm{1}}\geqslant\mathrm{1}…
Question Number 66518 by Masumsiddiqui399@gmail.com last updated on 16/Aug/19 Commented by mathmax by abdo last updated on 16/Aug/19 $${let}\:{f}\left({x}\right)=\frac{{x}\sqrt{{x}}−{a}\sqrt{{a}}}{{x}−{a}}\:\:\:{cha}\mathrm{7}{gement}\:{x}−{a}={t}\:{give} \\ $$$${lim}_{{x}\rightarrow{a}} {f}\left({x}\right)\:={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\frac{\left({t}+{a}\right)\sqrt{{t}+{a}}−{a}\sqrt{{a}}}{{t}} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}}…
Question Number 132055 by Study last updated on 10/Feb/21 $${prove}\:{that}\:\:\:{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} ={s}^{\mathrm{2}} −\mathrm{2}{p} \\ $$$${x}_{\mathrm{1}} \:{and}\:{x}_{\mathrm{2}} \:{are}\:{roots}\:{of}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$ Commented by JDamian…
Question Number 66517 by mhmd last updated on 16/Aug/19 $${find}\:{the}\:{area}\:{cos}\left(\mathrm{2}\theta\right) \\ $$ Commented by MJS last updated on 16/Aug/19 $$\mathrm{you}\:\mathrm{must}\:\mathrm{give}\:\mathrm{borders}… \\ $$ Answered by Smail…
Question Number 979 by 123456 last updated on 11/May/15 $$\mathrm{how}\:\mathrm{to}\:\mathrm{proof}\:\mathrm{that}\:{f}\left({x},{y}\right)={xy}\:\mathrm{is}\:\mathrm{of}\:\mathrm{class} \\ $$$$\mathrm{C}^{\infty} \:\mathrm{near}\:\mathrm{some}\:\mathrm{region}\:\mathrm{of}\:\mathrm{0}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66513 by Rio Michael last updated on 16/Aug/19 $${when}\:{finding}\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{2}{x}\:+\mathrm{4}\right)^{\mathrm{5}} {dx}\: \\ $$$${must}\:{we}\:{change}\:{limits}? \\ $$ Commented by kaivan.ahmadi last updated on 17/Aug/19…
Question Number 976 by 123456 last updated on 11/May/15 $$\begin{cases}{\mathrm{tan}\:{x}\:\mathrm{tan}\:\left({y}−{z}\right)={a}}\\{\mathrm{tan}\:{y}\:\mathrm{tan}\:\left({z}−{x}\right)={b}}\\{\mathrm{tan}\:{z}\:\mathrm{tan}\:\left({x}−{y}\right)={c}}\end{cases} \\ $$$$\mathrm{for}\:\mathrm{wich}\:\mathrm{values}\:\mathrm{of}\:{a},{b},{c}\:\mathrm{the}\:\mathrm{system} \\ $$$$\mathrm{have}\:\mathrm{solutions}? \\ $$$$\left({x},{y},{z},{a},{b},{c}\right)\in\mathbb{R}^{\mathrm{6}} \\ $$ Commented by 123456 last updated on 11/May/15…
Question Number 66508 by Masumsiddiqui399@gmail.com last updated on 16/Aug/19 Commented by Prithwish sen last updated on 16/Aug/19 $$\left(\sqrt{\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}}\right)^{\mathrm{x}+\sqrt{\mathrm{x}+\mathrm{2}}} =\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{x}+^{\mathrm{3}} \sqrt{\mathrm{2x}+\mathrm{4}}} \\ $$$$\because\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}\:=\:\left(\mathrm{2}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\therefore\:\mathrm{x}+\sqrt{\mathrm{x}+\mathrm{2}}=\mathrm{x}+^{\mathrm{3}} \sqrt{\mathrm{2x}+\mathrm{1}}\:\:\Rightarrow\mathrm{x}=\mathrm{2}…