Menu Close

Author: Tinku Tara

f-x-e-x-1-x-2-and-the-domain-D-f-of-f-is-chosen-appropriately-find-d-dx-f-x-at-any-point-x-in-D-f-

Question Number 4486 by Rasheed Soomro last updated on 31/Jan/16 $${f}\left({x}\right)={e}^{{x}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)\:{and}\:{the}\:{domain}\:{D}\left({f}\right)\:{of}\:\:{f} \\ $$$${is}\:{chosen}\:{appropriately},\:{find}\:\frac{{d}}{{dx}}{f}\left({x}\right)\:\:{at}\: \\ $$$${any}\:{point}\:{x}\:{in}\:{D}\left({f}\right)\:. \\ $$ Answered by Yozzii last updated on…

By-murging-two-sequences-a-1-a-2-a-n-and-b-1-b-2-b-n-a-new-sequence-a-1-b-1-a-2-b-2-a-n-b-n-has-been-produced-Determine-a-single-formula-general-term-of-th

Question Number 4485 by Rasheed Soomro last updated on 31/Jan/16 $${By}\:\:{murging}\:\:{two}\:{sequences} \\ $$$$\:\:\:\:{a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,…{a}_{{n}} \:\:\:{and}\:\:{b}_{\mathrm{1}} ,{b}_{\mathrm{2}} ,…,{b}_{{n}} \\ $$$${a}\:{new}\:{sequence}\: \\ $$$$\:\:\:\:{a}_{\mathrm{1}} ,{b}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{b}_{\mathrm{2}}…

12345689654321233-5333334096-12345679-12345689654321233-5333334096-12345679-1-3-

Question Number 70021 by naka3546 last updated on 30/Sep/19 $$\sqrt[{\mathrm{3}}]{\sqrt{\sqrt{\mathrm{12345689654321233}\:+\:\mathrm{5333334096}\:\sqrt{\mathrm{12345679}}}}\:−\:\sqrt{\sqrt{\mathrm{12345689654321233}\:−\:\mathrm{5333334096}\:\sqrt{\mathrm{12345679}}}}}\:\:=\:\:… \\ $$ Commented by MJS last updated on 30/Sep/19 $$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve} \\ $$$$\sqrt{{a}+{b}\sqrt{{c}}}={p}+{q}\sqrt{{c}}\:\Leftrightarrow\:{a}={p}^{\mathrm{2}} +{cq}^{\mathrm{2}} \wedge{b}=\mathrm{2}{pq} \\…

Solution-log-8-x-log-4-x-log-2-x-11-1-log-x-8-1-log-x-4-1-log-x-2-11-1-log-x-2-3-1-log-x-2-2-1-log-x-2-11-1-3log-x-2-1-2log-x-2-1-log-x-2-11-1-3-1-2-1-

Question Number 70017 by Shamim last updated on 30/Sep/19 $$\mathrm{Solution}- \\ $$$$\mathrm{log}_{\mathrm{8}} \mathrm{x}+\mathrm{log}_{\mathrm{4}} \mathrm{x}+\mathrm{log}_{\mathrm{2}} \mathrm{x}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{8}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{4}}+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}}=\mathrm{11} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{x}} \mathrm{2}^{\mathrm{2}}…

Question-135544

Question Number 135544 by 0731619177 last updated on 13/Mar/21 Answered by Olaf last updated on 13/Mar/21 $${f}\left({x}\right)\:=\:\mathrm{sin}{x}+\mathrm{cos}{x}\:=\:\sqrt{\mathrm{2}}\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}−{x}\right) \\ $$$${x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right]\:\Rightarrow\:{f}\left({x}\right)\in\left[\mathrm{1},\sqrt{\mathrm{2}}\right] \\ $$$$\Rightarrow\:\forall{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right]\:\lfloor{f}\left({x}\right)\rfloor\:=\:\mathrm{1} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{cos}\left(\mathrm{2}{x}\right)×\mathrm{2}^{\mathrm{1}}…