Menu Close

Author: Tinku Tara

find-the-fourier-serie-of-f-t-sinh-t-into-the-interval-1-1-

Question Number 922 by 123456 last updated on 25/Apr/15 $$\mathrm{find}\:\mathrm{the}\:\mathrm{fourier}\:\mathrm{serie}\:\mathrm{of} \\ $$$${f}\left({t}\right)=\mathrm{sinh}\left({t}\right) \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{interval}\:\left(−\mathrm{1},+\mathrm{1}\right) \\ $$ Answered by prakash jain last updated on 25/Apr/15 $${F}\left({w}\right)=\underset{{k}=−\infty}…

30-you-can-use-this-numbers-1-3-5-7-9-11-13-15-you-also-use-a-number-double-only-genius-is-solve-it-

Question Number 919 by sai dinesh last updated on 24/Apr/15 $$−+−+−=\mathrm{30} \\ $$$${you}\:{can}\:{use}\:{this}\:{numbers}\left(\mathrm{1},\mathrm{3},\mathrm{5},\mathrm{7},\mathrm{9},\mathrm{11},\mathrm{13},\mathrm{15}\right) \\ $$$${you}\:{also}\:{use}\:{a}\:{number}\:{double} \\ $$$${only}\:{genius}\:{is}\:{solve}\:{it} \\ $$$$ \\ $$ Answered by prakash jain…

nice-calculus-prove-that-1-0-1-li-2-1-x-2-pi-2-2-4-2-0-1-log-1-t-t-3-4-1-t-dt-pi-3-2-2-2-3-4-log-2-pi-2-hi

Question Number 131991 by mnjuly1970 last updated on 10/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:\:\:\:\:\:{calculus}…\:\: \\ $$$$\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\phi_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} {li}_{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\:−\mathrm{4} \\ $$$$\:\:\:\:\phi_{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{log}\left(\mathrm{1}−{t}\right)}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}}…

Show-that-t-0-x-1-where-x-e-t-2-t-2-2t-2-t-R-

Question Number 915 by 112358 last updated on 24/Apr/15 $${Show}\:{that}\:\forall{t}\geqslant\mathrm{0}\:,\:{x}\leqslant\mathrm{1}\:{where} \\ $$$${x}=\frac{{e}^{−{t}} }{\mathrm{2}}\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{2}\right)\:\:,\:{t}\in\mathbb{R}.\: \\ $$ Commented by 123456 last updated on 24/Apr/15 $${t}\geqslant\mathrm{0}\Leftrightarrow−{t}\leqslant\mathrm{0}\Leftrightarrow{e}^{−{t}} \leqslant{e}^{\mathrm{0}}…

Eight-people-are-seated-around-a-circular-table-Each-person-must-shake-everyone-s-hand-but-they-must-not-shake-hands-with-the-two-persons-seated-at-their-sides-How-many-handshakes-occur-

Question Number 911 by 112358 last updated on 22/Apr/15 $${Eight}\:{people}\:{are}\:{seated}\:{around} \\ $$$${a}\:{circular}\:{table}.\:{Each}\:{person} \\ $$$${must}\:{shake}\:{everyone}'{s}\:{hand}\:{but} \\ $$$${they}\:{must}\:{not}\:{shake}\:{hands}\:{with} \\ $$$${the}\:{two}\:{persons}\:{seated}\:{at}\:{their}\:{sides}. \\ $$$${How}\:{many}\:{handshakes}\:{occur}? \\ $$ Answered by prakash…

Show-that-for-the-system-of-equations-x-y-z-3-2x-2y-2z-6-3x-3y-3z-9-the-general-solution-is-given-by-x-1-

Question Number 908 by 112358 last updated on 20/Apr/15 $${Show}\:{that}\:{for}\:{the}\:{system}\:{of}\: \\ $$$${equations} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}+{y}+{z}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{z}=\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{x}+\mathrm{3}{y}+\mathrm{3}{z}=\mathrm{9} \\ $$$${the}\:{general}\:{solution}\:{is}\:{given}\:{by} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\lambda+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}=\mu+\mathrm{1} \\…