Menu Close

Author: Tinku Tara

Solve-4x-3y-7xy-3x-2y-18xy-

Question Number 867 by sagarwal last updated on 03/Apr/15 $$\mathrm{Solve} \\ $$$$\mathrm{4}{x}−\mathrm{3}{y}=\mathrm{7}{xy} \\ $$$$\mathrm{3}{x}+\mathrm{2}{y}=\mathrm{18}{xy} \\ $$ Commented by 123456 last updated on 03/Apr/15 $$\begin{cases}{\mathrm{4}{x}−\mathrm{3}{y}=\mathrm{7}{xy}}\\{\mathrm{3}{x}+\mathrm{2}{y}=\mathrm{18}{xy}}\end{cases} \\…

lim-x-1-n-

Question Number 131938 by Raxreedoroid last updated on 09/Feb/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}!}}=? \\ $$ Answered by Faetma last updated on 09/Feb/21 $$\left.\begin{matrix}{\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:{n}!=+\infty}\\{\underset{\mathrm{N}\rightarrow+\infty} {\mathrm{lim}}\:\sqrt{\mathrm{N}}=+\infty}\\{\underset{\mathrm{N}'\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{N}'}=\mathrm{0}^{+} }\end{matrix}\right\}\underset{{n}\rightarrow+\infty}…

Question-131935

Question Number 131935 by Salman_Abir last updated on 09/Feb/21 Answered by physicstutes last updated on 10/Feb/21 $$\mathrm{2CH}_{\mathrm{3}} \mathrm{OH}\:+\:\mathrm{3O}_{\mathrm{2}} \:\rightarrow\mathrm{2}\:\mathrm{CO}_{\mathrm{2}} \:+\:\mathrm{4}\:\mathrm{H}_{\mathrm{2}} \mathrm{O} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{moles}\:\mathrm{of}\:\mathrm{CH}_{\mathrm{3}} \mathrm{OH}: \\…

Seja-53-log-1-e-x-11-1-9999999-1-Calcule-x-1-x-2-0-9-

Question Number 66396 by hmamarques1994@gmai.com last updated on 14/Aug/19 $$\: \\ $$$$\:\boldsymbol{\mathrm{Seja}}\:\:\mathrm{53}^{\boldsymbol{\mathrm{log}}_{\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{e}}^{\boldsymbol{\pi}} }}} \left[\sqrt[{\mathrm{9999999}}]{\left(\boldsymbol{{x}}+\mathrm{11}\right)!}\right]} \:=\:\mathrm{1}. \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Calcule}}\:\:\frac{\boldsymbol{\mathrm{x}}_{\mathrm{1}} }{\boldsymbol{\mathrm{x}}_{\mathrm{2}} }+\mathrm{0},\mathrm{9}.…

f-x-2-f-x-2-f-1-1-

Question Number 860 by 123456 last updated on 28/Mar/15 $${f}\left({x}^{\mathrm{2}} \right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$ Commented by prakash jain last updated on 28/Mar/15 $${f}\left({x}\right)=\mathrm{0}\:\mathrm{or}\:{f}\left({x}\right)=\mathrm{1} \\…