Menu Close

Author: Tinku Tara

solve-for-x-3-14x-15-72-

Question Number 453 by Karting7442 last updated on 25/Jan/15 $${solve}\:{for}\:{x}\:\:\:\mathrm{3}\left(\mathrm{14}{x}−\mathrm{15}\right)=−\mathrm{72} \\ $$ Answered by prakash jain last updated on 09/Jan/15 $$\mathrm{3}\left(\mathrm{14}{x}−\mathrm{15}\right)=−\mathrm{72} \\ $$$$\mathrm{42}{x}−\mathrm{45}=−\mathrm{72} \\ $$$$\mathrm{42}{x}=−\mathrm{72}+\mathrm{45}…

Given-0-3-f-x-dx-0-3-2x-1-dx-0-3-0-3-f-x-dx-dx-find-1-1-f-x-dx-

Question Number 131517 by benjo_mathlover last updated on 05/Feb/21 $$\mathrm{Given}\:\int_{\mathrm{0}} ^{\mathrm{3}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{0}} ^{\mathrm{3}} \left(\mathrm{2x}−\mathrm{1}\right)\mathrm{dx}+\int_{\mathrm{0}} ^{\mathrm{3}} \left(\int_{\mathrm{0}} ^{\mathrm{3}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\right)\mathrm{dx} \\ $$$$\mathrm{find}\:\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\:. \\ $$ Answered…

Simplify-1-2i-2-7-1-2i-7-

Question Number 65983 by Rio Michael last updated on 07/Aug/19 $$\:{Simplify}\: \\ $$$$\:\:\:\left(\mathrm{1}+\:\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{7}} \:−\:\left(\mathrm{1}\:+\mathrm{2}{i}\right)^{\mathrm{7}} \\ $$ Commented by Rio Michael last updated on 17/Aug/19 $${can}\:{i}\:{use}\:{de}\:{moivre}'{s}\:{theorem}?…

0-f-x-g-x-g-x-f-x-dx-f-x-g-x-dx-

Question Number 445 by 123456 last updated on 05/Jan/15 $$\mathrm{0}\leqslant\mid{f}\left({x}\right)\mid\leqslant\mid{g}\left({x}\right)\mid \\ $$$$\int{g}\left({x}\right)−{f}\left({x}\right)\:{dx}\leqslant\int{f}\left({x}\right)+{g}\left({x}\right)\:{dx}\:\:? \\ $$ Commented by prakash jain last updated on 05/Jan/15 $${f}\left({x}\right)=−\mathrm{1} \\ $$$${g}\left({x}\right)=\mathrm{1}…

Question-65981

Question Number 65981 by Tanmay chaudhury last updated on 07/Aug/19 Answered by jimful last updated on 07/Aug/19 $${let}\:{s}_{{n}} =\Sigma\mathrm{1}/{n}. \\ $$$$\Sigma\left({k}+\mathrm{1}\right)/{k}\:\bullet\Sigma{k}/\left({k}+\mathrm{1}\right) \\ $$$$=\left({n}+{s}_{{n}} \right)\left({n}−{s}_{{n}+\mathrm{1}} +\mathrm{1}\right)…

Prove-or-disprove-that-minimum-value-of-n-which-satisfies-the-equation-10-n-1-mod-7-p-is-n-6-7-p-1-

Question Number 443 by prakash jain last updated on 04/Jan/15 $$\mathrm{Prove}\:\mathrm{or}\:\mathrm{disprove}\:\mathrm{that}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\mathrm{of}\:{n}\:\mathrm{which}\:\mathrm{satisfies}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{10}^{{n}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{7}^{{p}} \right)\:\mathrm{is}\:{n}=\mathrm{6}×\mathrm{7}^{{p}−\mathrm{1}} . \\ $$ Commented by 123456 last updated…