Menu Close

Author: Tinku Tara

log-2-x-log-3-x-1-x-

Question Number 131884 by Study last updated on 09/Feb/21 $${log}_{\mathrm{2}} {x}+{log}_{\mathrm{3}} {x}=\mathrm{1}\:\:\:\:\:\:\:{x}=? \\ $$ Answered by EDWIN88 last updated on 09/Feb/21 $$\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{ln}\:\mathrm{2}}\:+\:\frac{\mathrm{ln}\:\mathrm{x}}{\mathrm{ln}\:\mathrm{3}}\:=\:\mathrm{1}\: \\ $$$$\:\mathrm{ln}\:\mathrm{x}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{3}}\right)=\mathrm{1} \\…

let-I-n-0-e-nt-1-e-t-n-1-dt-n-from-N-prove-the-existence-of-I-n-2-find-lim-n-I-n-

Question Number 66351 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }{dt}\:\:\:\:\:\left({n}\:{from}\:{N}^{\bigstar} \right) \\ $$$$\left.\right){prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{I}_{{n}} \\…

Question-131887

Question Number 131887 by Algoritm last updated on 09/Feb/21 Answered by SEKRET last updated on 09/Feb/21 $$\:\boldsymbol{\mathrm{Leybnist}}\:\:\:\boldsymbol{\mathrm{formula}} \\ $$$$\:\:\boldsymbol{\mathrm{u}}=\:\boldsymbol{\mathrm{e}}^{−\mathrm{2}\boldsymbol{\mathrm{x}}} \:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{u}}^{\boldsymbol{\mathrm{n}}} =\left(−\mathrm{2}\right)^{\boldsymbol{\mathrm{n}}} \centerdot\boldsymbol{\mathrm{e}}^{−\mathrm{2}\boldsymbol{\mathrm{x}}} \\ $$$$\:\boldsymbol{\mathrm{v}}=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}}}\:\:\:\:\:\:\boldsymbol{\mathrm{v}}^{\boldsymbol{\mathrm{n}}} =\frac{\left(\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}\right)!!}{\mathrm{2}^{\boldsymbol{\mathrm{n}}}…

let-I-n-0-1-x-2n-1-ln-x-x-2-1-dx-1-prove-the-existence-of-I-n-2-calculate-I-n-1-I-n-3-prove-thst-x-0-1-0-lt-xlnx-x-2-1-lt-1-2-4-find-lim-n-I-n-

Question Number 66347 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({x}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{I}_{{n}+\mathrm{1}} −{I}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right){prove}\:{thst}\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xlnx}}{{x}^{\mathrm{2}} −\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\right.…

let-f-n-x-1-1-x-n-1-1-n-defined-on-0-1-1-prove-that-f-n-cs-to-a-function-f-on-0-1-2-calculate-I-n-0-1-f-n-x-dx-

Question Number 66344 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{f}_{{n}} \left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{{n}} \right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} }\:\:\:{defined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{f}_{{n}} \rightarrow^{{cs}} \:\:{to}\:{a}\:{function}\:{f}\:{on}\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right){dx}…

lim-x-0-x-x-x-1-1-4-1-

Question Number 131882 by Eric002 last updated on 09/Feb/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{{x}+\sqrt[{\mathrm{4}}]{{x}+\mathrm{1}}−\mathrm{1}} \\ $$ Answered by liberty last updated on 09/Feb/21 $$\:\mathrm{L}'\mathrm{H}\ddot {\mathrm{o}pital}\:\mathrm{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}\:\sqrt[{\mathrm{4}}]{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }}}\:\right]=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}}=\:\frac{\mathrm{4}}{\mathrm{5}} \\…