Question Number 131858 by mohammad17 last updated on 09/Feb/21 Commented by mohammad17 last updated on 09/Feb/21 $${how}\:{can}\:{it}\:{solve}\:{this} \\ $$ Commented by Dwaipayan Shikari last updated…
Question Number 66321 by mathmax by abdo last updated on 12/Aug/19 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\left({tan}\left(\frac{\pi}{\mathrm{2}+{x}}\right)\right)^{{x}} \\ $$ Commented by mathmax by abdo last updated on 24/Aug/19…
Question Number 66318 by mathmax by abdo last updated on 12/Aug/19 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)^{\frac{\mathrm{1}}{{sinx}}} \\ $$ Commented by mathmax by abdo last updated on 24/Aug/19 $${let}\:{f}\left({x}\right)=\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)^{\frac{\mathrm{1}}{{sinx}}}…
Question Number 131852 by mnjuly1970 last updated on 09/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:{analysis}\:\left({II}\right)… \\ $$$$\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\varnothing=\int_{\mathrm{1}} ^{\:\mathrm{10}} {x}^{\mathrm{2}} {d}\left(\left\{{x}\right\}\right)=? \\ $$$$\:\:\:\:\:\:\:\left\{{x}\right\}\:::\:{fractional}\:{part}\:{of}\:{x}\:… \\ $$$$ \\ $$ Answered by…
Question Number 66319 by mathmax by abdo last updated on 12/Aug/19 $${find}\:{lim}_{{x}\rightarrow+\infty} \:\:\:\:\left(\frac{{a}^{\frac{\mathrm{1}}{{x}}} \:+\mathrm{2}{b}^{\frac{\mathrm{1}}{{x}}} +\mathrm{3}{c}^{\frac{\mathrm{1}}{{x}}} }{\mathrm{6}}\right)^{{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66316 by mathmax by abdo last updated on 12/Aug/19 $${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{ln}\left({sin}^{\mathrm{2}} {x}\right)}{\left(\frac{\pi}{\mathrm{2}}−{x}\right)^{\mathrm{2}} } \\ $$$$ \\ $$ Commented by mathmax by abdo last…
Question Number 66317 by mathmax by abdo last updated on 12/Aug/19 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{ln}\left({cosx}\right)}{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)} \\ $$ Commented by kaivan.ahmadi last updated on 12/Aug/19 $$\equiv{lim}_{{x}\rightarrow\mathrm{0}} \frac{{ln}\left({cosx}\right)}{\mathrm{2}{x}^{\mathrm{2}} }\overset{{hop}}…
Question Number 131849 by mnjuly1970 last updated on 09/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\ast\ast\ast\:\:\:{calculus}\:\left({I}\right)\:\ast\ast\ast \\ $$$$\:\:\:{please}\:\:{evaluate}:: \\ $$$$\:\:\:\:\:\:\:\:\phi=\int\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right){ln}\left({tan}\left({x}\right)\right)} \\ $$$$\:\:\:\:\:\:{Trinity}\:{College} \\ $$$$\:\:\:\:\:\:\:{Cambridge}\:….\mathrm{1897}… \\ $$ Answered by mindispower last updated…
Question Number 776 by 123456 last updated on 12/Mar/15 $$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }={v}_{\mathrm{1}} \frac{\partial^{\mathrm{2}} {u}}{\partial{x}\partial{t}}+{v}_{\mathrm{2}} ^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {u}}{\partial{t}^{\mathrm{2}} } \\ $$$${u}\left({x},\mathrm{0}\right)={f}\left({x}\right) \\ $$$${u}_{{t}} \left({x},\mathrm{0}\right)={g}\left({x}\right) \\ $$…
Question Number 66310 by mr W last updated on 12/Aug/19 Commented by mr W last updated on 12/Aug/19 $${all}\:{contact}\:{is}\:{frictionless}. \\ $$$${find}\:{the}\:{minimum}\:{length}\:{of}\:{uniform} \\ $$$${rope}\:{such}\:{that}\:{it}\:{can}\:{stay}\:{in}\:{equilibrium} \\ $$$${as}\:{shown}.…