Menu Close

Author: Tinku Tara

analysis-II-evaluate-1-10-x-2-d-x-x-fractional-part-of-x-

Question Number 131852 by mnjuly1970 last updated on 09/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:{analysis}\:\left({II}\right)… \\ $$$$\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\varnothing=\int_{\mathrm{1}} ^{\:\mathrm{10}} {x}^{\mathrm{2}} {d}\left(\left\{{x}\right\}\right)=? \\ $$$$\:\:\:\:\:\:\:\left\{{x}\right\}\:::\:{fractional}\:{part}\:{of}\:{x}\:… \\ $$$$ \\ $$ Answered by…

calculus-I-please-evaluate-dx-sin-2x-ln-tan-x-Trinity-College-Cambridge-1897-

Question Number 131849 by mnjuly1970 last updated on 09/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\ast\ast\ast\:\:\:{calculus}\:\left({I}\right)\:\ast\ast\ast \\ $$$$\:\:\:{please}\:\:{evaluate}:: \\ $$$$\:\:\:\:\:\:\:\:\phi=\int\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right){ln}\left({tan}\left({x}\right)\right)} \\ $$$$\:\:\:\:\:\:{Trinity}\:{College} \\ $$$$\:\:\:\:\:\:\:{Cambridge}\:….\mathrm{1897}… \\ $$ Answered by mindispower last updated…

2-u-x-2-v-1-2-u-x-t-v-2-2-2-u-t-2-u-x-0-f-x-u-t-x-0-g-x-

Question Number 776 by 123456 last updated on 12/Mar/15 $$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }={v}_{\mathrm{1}} \frac{\partial^{\mathrm{2}} {u}}{\partial{x}\partial{t}}+{v}_{\mathrm{2}} ^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {u}}{\partial{t}^{\mathrm{2}} } \\ $$$${u}\left({x},\mathrm{0}\right)={f}\left({x}\right) \\ $$$${u}_{{t}} \left({x},\mathrm{0}\right)={g}\left({x}\right) \\ $$…

Question-66310

Question Number 66310 by mr W last updated on 12/Aug/19 Commented by mr W last updated on 12/Aug/19 $${all}\:{contact}\:{is}\:{frictionless}. \\ $$$${find}\:{the}\:{minimum}\:{length}\:{of}\:{uniform} \\ $$$${rope}\:{such}\:{that}\:{it}\:{can}\:{stay}\:{in}\:{equilibrium} \\ $$$${as}\:{shown}.…