Menu Close

Author: Tinku Tara

lim-x-pi-2-2-cos-x-1-x-x-pi-2-

Question Number 131769 by liberty last updated on 08/Feb/21 $$\:\:\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{2}^{−\mathrm{cos}\:\mathrm{x}} \:−\mathrm{1}}{\mathrm{x}\left(\mathrm{x}−\frac{\pi}{\mathrm{2}}\right)}\:=?\: \\ $$ Answered by bemath last updated on 08/Feb/21 $$\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{x}}\:.\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{2}^{\mathrm{sin}\:\left(\mathrm{x}−\frac{\pi}{\mathrm{2}}\right)} −\mathrm{1}}{\mathrm{x}−\frac{\pi}{\mathrm{2}}}\:=…

given-that-1-2pi-e-t-2-2-2-dt-1-and-g-n-u-1-2pi-x-u-n-e-t-2-2-2-dt-and-f-n-u-1-2pi-t-u-n-e-t-

Question Number 697 by 123456 last updated on 02/Mar/15 $${given}\:{that}\:\frac{\mathrm{1}}{\sigma\sqrt{\mathrm{2}\pi}}\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−\frac{\left({t}−\mu\right)^{\mathrm{2}} }{\mathrm{2}\sigma^{\mathrm{2}} }} {dt}=\mathrm{1} \\ $$$${and}\:{g}\left({n},{u}\right)=\frac{\mathrm{1}}{\sigma\sqrt{\mathrm{2}\pi}}\:\underset{−\infty} {\overset{+\infty} {\int}}\left({x}−{u}\right)^{{n}} {e}^{−\frac{\left({t}−\mu\right)^{\mathrm{2}} }{\mathrm{2}\sigma^{\mathrm{2}} }} {dt} \\ $$$${and}\:{f}\left({n},{u}\right)=\frac{\mathrm{1}}{\sigma\sqrt{\mathrm{2}\pi}}\underset{−\infty}…

the-equation-f-x-0-has-real-roots-in-the-interval-a-b-if-A-f-a-gt-0-and-f-b-gt-0-B-f-a-lt-0-and-f-b-lt-0-C-f-a-gt-0-and-f-b-0-D-f-a-gt-0-and-f-b-lt-0-

Question Number 66226 by Rio Michael last updated on 11/Aug/19 $${the}\:{equation}\:\:{f}\left({x}\right)=\mathrm{0}\:{has}\:{real}\:{roots}\:{in}\: \\ $$$${the}\:{interval}\:\left({a},\:{b}\right)\:{if} \\ $$$${A}\:\:\:\:−{f}\left({a}\right)>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:>\mathrm{0} \\ $$$${B}\:\:\:{f}\left({a}\right)\:<\mathrm{0}\:{and}\:{f}\left({b}\right)\:<\mathrm{0} \\ $$$${C}\:\:−{f}\left({a}\right)\:>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:=\mathrm{0} \\ $$$${D}\:\:{f}\left({a}\right)\:>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:<\:\mathrm{0} \\ $$ Commented by…

Using-a-good-counter-procedure-prove-that-y-x-lim-x-0-f-x-f-x-x-for-a-given-function-f-x-in-x-

Question Number 66227 by Rio Michael last updated on 11/Aug/19 $${Using}\:{a}\:{good}\:{counter}\:{procedure},\:{prove}\:{that}\: \\ $$$$\:\:\:\frac{\partial{y}}{\partial{x}}\:=\:\underset{\partial{x}\rightarrow\mathrm{0}} {{lim}}\frac{{f}\left(\partial\:+\:{x}\right)\:−{f}\left({x}\right)}{\partial{x}} \\ $$$${for}\:{a}\:{given}\:{function}\:\:{f}\left({x}\right)\:{in}\:{x}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Evaluate-1-0-sin-x-2-dx-2-0-cos-x-2-dx-3-0-tan-x-2-dx-

Question Number 689 by 112358 last updated on 25/Feb/15 $${Evaluate}\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}, \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{\mathrm{2}} \right){dx}, \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {tan}\left({x}^{\mathrm{2}} \right){dx}.…