Menu Close

Author: Tinku Tara

S-1-2-3-4-S-

Question Number 4285 by Filup last updated on 07/Jan/16 $${S}=\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+…}}} \\ $$$${S}=??? \\ $$ Commented by RasheedSindhi last updated on 07/Jan/16 $$\mathrm{S}=\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+\sqrt{\mathrm{4}+…}}} \\ $$$${S}\left({n}\right)=\sqrt{\left({n}+\mathrm{1}\right)+{S}\left({n}+\mathrm{1}\right)} \\…

Probability-Urn-I-contains-5-red-and-3-green-balls-Urn-II-contains-2-red-and-7-green-balls-One-balls-is-transferred-at-random-from-urn-I-to-urn-II-After-stirring-1-ball-is-chosen-from-urn-II-

Question Number 135352 by EDWIN88 last updated on 12/Mar/21 $$\underline{\mathrm{Probability}} \\ $$$$\mathrm{Urn}\:\mathrm{I}\:\mathrm{contains}\:\mathrm{5}\:\mathrm{red}\:\mathrm{and}\:\mathrm{3}\:\mathrm{green}\:\mathrm{balls}.\:\mathrm{Urn}\:\mathrm{II} \\ $$$$\mathrm{contains}\:\mathrm{2}\:\mathrm{red}\:\mathrm{and}\:\mathrm{7}\:\mathrm{green}\:\mathrm{balls}.\:\mathrm{One}\:\mathrm{balls} \\ $$$$\mathrm{is}\:\mathrm{transferred}\:\left(\mathrm{at}\:\mathrm{random}\right)\:\mathrm{from}\:\mathrm{urn}\:\mathrm{I}\:\mathrm{to}\:\mathrm{urn}\:\mathrm{II} \\ $$$$.\:\mathrm{After}\:\mathrm{stirring}\:,\:\mathrm{1}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{chosen}\:\mathrm{from}\:\mathrm{urn}\:\mathrm{II}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{the}\:\left(\mathrm{final}\right)\:\mathrm{ball}\:\mathrm{is} \\ $$$$\mathrm{green}?\: \\ $$ Answered…

The-following-image-shows-the-functiond-f-x-xe-1-1-x-and-g-x-x-1-Can-you-explain-as-to-why-as-f-x-that-f-x-g-x-

Question Number 4281 by Filup last updated on 07/Jan/16 $$\mathrm{The}\:\mathrm{following}\:\mathrm{image}\:\mathrm{shows}\:\mathrm{the}\:\mathrm{functiond} \\ $$$${f}\left({x}\right)={xe}^{\frac{\mathrm{1}}{\mathrm{1}−{x}}} \:\:\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:{g}\left({x}\right)={x}−\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{as}\:\mathrm{to}\:\mathrm{why}\:\mathrm{as}\:\mid{f}\left({x}\right)\mid\rightarrow\infty, \\ $$$$\mathrm{that}\:{f}\left({x}\right)\rightarrow{g}\left({x}\right). \\ $$ Commented by Filup last…

An-online-trading-company-wants-to-offer-discounts-to-customers-The-company-has-recently-emailed-the-discount-codes-to-customers-New-customers-must-have-the-code-to-be-eligible-but-returning-cust

Question Number 135348 by nadovic last updated on 12/Mar/21 $$\mathrm{An}\:\mathrm{online}\:\mathrm{trading}\:\mathrm{company}\:\mathrm{wants}\:\mathrm{to} \\ $$$$\mathrm{offer}\:\mathrm{discounts}\:\mathrm{to}\:\mathrm{customers}.\:\mathrm{The}\: \\ $$$$\mathrm{company}\:\mathrm{has}\:\mathrm{recently}\:\mathrm{emailed}\:\mathrm{the} \\ $$$$\mathrm{discount}\:\mathrm{codes}\:\mathrm{to}\:\mathrm{customers}.\:\mathrm{New}\: \\ $$$$\mathrm{customers}\:\mathrm{must}\:\mathrm{have}\:\mathrm{the}\:\mathrm{code}\:\mathrm{to}\:\mathrm{be}\: \\ $$$$\mathrm{eligible}\:\mathrm{but}\:\mathrm{returning}\:\mathrm{customers}\:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{eligible}\:\mathrm{for}\:\mathrm{the}\:\mathrm{discount}. \\ $$$$\:\:\:\:\:\:{Let}\:\:\:{A}\:−\:{Returning}\:{Customer} \\…

lim-x-xsin-pi-x-

Question Number 69809 by RAKESH MANDA last updated on 28/Sep/19 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\mathrm{sin}\:\frac{\pi}{{x}} \\ $$ Commented by mr W last updated on 28/Sep/19 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\mathrm{sin}\:\frac{\pi}{{x}} \\…

1-2-

Question Number 4268 by Momeen last updated on 06/Jan/16 $$\mathrm{1}+\mathrm{2}= \\ $$ Answered by Yozzii last updated on 06/Jan/16 $$\frac{\mathrm{1}}{\mathrm{11}}×\frac{\partial^{\mathrm{4}} }{\partial^{\mathrm{2}} {x}\partial^{\mathrm{2}} {y}}\left[\frac{\mathrm{11}}{\mathrm{4}}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right]\left({exp}\left({ln}\left[\frac{\mathrm{24}}{\pi}\left\{\underset{{n}\rightarrow+\infty}…

1-find-f-0-cos-x-x-4-1-2-dx-with-real-2-find-the-value-of-0-cos-2x-x-4-1-2-dx-3-find-nature-of-the-serie-f-n-

Question Number 69803 by Abdo msup. last updated on 28/Sep/19 $$\left.\mathrm{1}\right){find}\:\:\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\alpha{x}\right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:{with}\:\alpha\:{real} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma{f}\left({n}\right) \\ $$…