Question Number 131775 by Raxreedoroid last updated on 08/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of} \\ $$$${g}\left({x}\right)=\int_{\mathrm{tan}\:{x}} ^{\:{x}^{\mathrm{2}} } \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+{t}^{\mathrm{4}} }}\:{dt} \\ $$ Answered by bemath last updated on 08/Feb/21…
Question Number 131769 by liberty last updated on 08/Feb/21 $$\:\:\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{2}^{−\mathrm{cos}\:\mathrm{x}} \:−\mathrm{1}}{\mathrm{x}\left(\mathrm{x}−\frac{\pi}{\mathrm{2}}\right)}\:=?\: \\ $$ Answered by bemath last updated on 08/Feb/21 $$\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{x}}\:.\:\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{2}^{\mathrm{sin}\:\left(\mathrm{x}−\frac{\pi}{\mathrm{2}}\right)} −\mathrm{1}}{\mathrm{x}−\frac{\pi}{\mathrm{2}}}\:=…
Question Number 698 by 9999 last updated on 01/Mar/15 $${solve}\:{for}\:{x} \\ $$$$\frac{{a}}{{ax}−\mathrm{1}}+\frac{{b}}{{bx}−\mathrm{1}}={a}+{b} \\ $$ Commented by 123456 last updated on 28/Feb/15 $${a}=\mathrm{0} \\ $$$$\frac{{b}}{{bx}−\mathrm{1}}={b},{b}=\mathrm{0},\forall{x}\neq\frac{\mathrm{1}}{{b}} \\…
Question Number 697 by 123456 last updated on 02/Mar/15 $${given}\:{that}\:\frac{\mathrm{1}}{\sigma\sqrt{\mathrm{2}\pi}}\underset{−\infty} {\overset{+\infty} {\int}}{e}^{−\frac{\left({t}−\mu\right)^{\mathrm{2}} }{\mathrm{2}\sigma^{\mathrm{2}} }} {dt}=\mathrm{1} \\ $$$${and}\:{g}\left({n},{u}\right)=\frac{\mathrm{1}}{\sigma\sqrt{\mathrm{2}\pi}}\:\underset{−\infty} {\overset{+\infty} {\int}}\left({x}−{u}\right)^{{n}} {e}^{−\frac{\left({t}−\mu\right)^{\mathrm{2}} }{\mathrm{2}\sigma^{\mathrm{2}} }} {dt} \\ $$$${and}\:{f}\left({n},{u}\right)=\frac{\mathrm{1}}{\sigma\sqrt{\mathrm{2}\pi}}\underset{−\infty}…
Question Number 131767 by ajfour last updated on 08/Feb/21 Commented by ajfour last updated on 08/Feb/21 $${Find}\:{force}\:{of}\:{Normal}\:{reaction} \\ $$$${between}\:{the}\:{cylinders}\:{hanging} \\ $$$${on}\:{a}\:{belt}\:{wrap}. \\ $$ Answered by…
Question Number 66228 by Rio Michael last updated on 11/Aug/19 $${prove}\:{that}\: \\ $$$$\int_{\mathrm{2}} ^{\mathrm{4}} \frac{\mathrm{6}{x}\:+\mathrm{1}}{\left(\mathrm{2}{x}−\mathrm{3}\right)\left(\mathrm{3}{x}−\mathrm{2}\right)}{dx}\:=\:{ln}\:\mathrm{10} \\ $$ Commented by Prithwish sen last updated on 11/Aug/19…
Question Number 131766 by rs4089 last updated on 08/Feb/21 Answered by guyyy last updated on 13/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66226 by Rio Michael last updated on 11/Aug/19 $${the}\:{equation}\:\:{f}\left({x}\right)=\mathrm{0}\:{has}\:{real}\:{roots}\:{in}\: \\ $$$${the}\:{interval}\:\left({a},\:{b}\right)\:{if} \\ $$$${A}\:\:\:\:−{f}\left({a}\right)>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:>\mathrm{0} \\ $$$${B}\:\:\:{f}\left({a}\right)\:<\mathrm{0}\:{and}\:{f}\left({b}\right)\:<\mathrm{0} \\ $$$${C}\:\:−{f}\left({a}\right)\:>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:=\mathrm{0} \\ $$$${D}\:\:{f}\left({a}\right)\:>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:<\:\mathrm{0} \\ $$ Commented by…
Question Number 66227 by Rio Michael last updated on 11/Aug/19 $${Using}\:{a}\:{good}\:{counter}\:{procedure},\:{prove}\:{that}\: \\ $$$$\:\:\:\frac{\partial{y}}{\partial{x}}\:=\:\underset{\partial{x}\rightarrow\mathrm{0}} {{lim}}\frac{{f}\left(\partial\:+\:{x}\right)\:−{f}\left({x}\right)}{\partial{x}} \\ $$$${for}\:{a}\:{given}\:{function}\:\:{f}\left({x}\right)\:{in}\:{x}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 689 by 112358 last updated on 25/Feb/15 $${Evaluate}\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {sin}\left({x}^{\mathrm{2}} \right){dx}, \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{\mathrm{2}} \right){dx}, \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} {tan}\left({x}^{\mathrm{2}} \right){dx}.…