Menu Close

Author: Tinku Tara

prove-that-n-1-1-2n-1-e-2n-1-pi-e-2n-1-pi-ln-2-16-

Question Number 131732 by mnjuly1970 last updated on 07/Feb/21 $$\:\:\:{prove}\:{that}: \\ $$$$\:\: \\ $$$$\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left({e}^{\left(\mathrm{2}{n}−\mathrm{1}\right)\pi} −{e}^{−\left(\mathrm{2}{n}−\mathrm{1}\right)\pi} \right)}=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{16}} \\ $$$$\: \\ $$ Terms of Service…

calculate-the-k-th-order-Taylor-polynomials-T-p-k-f-for-the-following-f-x-e-x-1-x-for-p-1-and-k-5-f-x-y-4sin-x-2-y-for-p-0-0-and-k-4-f-x-y-x-3-2xy-e-xy-for-p-1-1-and-k

Question Number 131735 by LYKA last updated on 07/Feb/21 $${calculate}\:{the}\:{k}-{th}\:{order}\:{Taylor} \\ $$$${polynomials}\:{T}_{{p}} ^{{k}} {f}\:{for}\:{the}\:{following} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{{e}^{−{x}} }{\mathrm{1}+{x}}\:\:\:{for}\:{p}=−\mathrm{1}\:{and}\:{k}=\mathrm{5} \\ $$$$ \\ $$$${f}\left({x}.{y}\right)=\:\mathrm{4}{sin}\left({x}^{\mathrm{2}} +{y}\right)\:{for}\:{p}=\left(\mathrm{0},\mathrm{0}\right)\:{and} \\…

given-the-function-f-x-y-xy-x-1-y-1-show-that-f-x-y-has-some-0-1-as-a-stationery-point-use-tylor-series-method-to-determine-whether-0-1-is-a-minima-maxima-or-saddle-point-

Question Number 131734 by LYKA last updated on 07/Feb/21 $$\boldsymbol{{given}}\:\boldsymbol{{the}}\:\boldsymbol{{function}} \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}.\boldsymbol{{y}}\right)=\boldsymbol{{xy}}\left(\boldsymbol{{x}}−\mathrm{1}\right)\left(\boldsymbol{{y}}−\mathrm{1}\right) \\ $$$$\boldsymbol{{show}}\:\boldsymbol{{that}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}.\boldsymbol{{y}}\right)\:\boldsymbol{{has}}\:\boldsymbol{{some}}\:\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\boldsymbol{{as}}\:\boldsymbol{{a}}\:\boldsymbol{{stationery}}\:\boldsymbol{{point}} \\ $$$$ \\ $$$$\boldsymbol{{use}}\:\boldsymbol{{tylor}}\:\boldsymbol{{series}}\:\boldsymbol{{method}}\:\boldsymbol{{to}}\: \\ $$$$\boldsymbol{{determine}}\:\boldsymbol{{whether}}\:\left(\mathrm{0}.\mathrm{1}\right)\:\boldsymbol{{is}}\:\boldsymbol{{a}} \\ $$$$\boldsymbol{{minima}}\:,\boldsymbol{{maxima}}\:\boldsymbol{{or}}\:\boldsymbol{{saddle}}\: \\…

proof-that-n-gt-n-3-n-n-N-

Question Number 658 by 123456 last updated on 22/Feb/15 $${proof}\:{that}\:{n}!>\left(\frac{{n}}{\mathrm{3}}\right)^{{n}} ,{n}\in\mathbb{N}^{\ast} \\ $$ Commented by 123456 last updated on 20/Feb/15 $${n}=\mathrm{1}\Rightarrow\mathrm{1}!=\mathrm{1}>\frac{\mathrm{1}}{\mathrm{3}}=\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{1}} \\ $$$${n}=\mathrm{1}\Rightarrow\mathrm{0}!=\mathrm{1}>\frac{\mathrm{1}}{\mathrm{3}}\approx\mathrm{0}.\mathrm{33} \\ $$$${n}=\mathrm{2}\Rightarrow\mathrm{2}!=\mathrm{2}>\frac{\mathrm{4}}{\mathrm{9}}=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}}…

if-a-n-and-b-n-are-two-real-sequence-such-that-e-a-n-a-n-e-b-n-a-proof-that-a-n-gt-0-b-n-gt-0-b-if-a-n-gt-0-n-N-if-n-0-a-n-converge-then-n-0-b-n-a-n-converge-

Question Number 657 by 123456 last updated on 21/Feb/15 $${if}\:\left({a}_{{n}} \right)\:{and}\:\left({b}_{{n}} \right)\:{are}\:{two}\:{real}\:{sequence} \\ $$$${such}\:{that}\:{e}^{{a}_{{n}} } ={a}_{{n}} +{e}^{{b}_{{n}} } \\ $$$$\left.{a}\right)\:{proof}\:{that}\:{a}_{{n}} >\mathrm{0}\Rightarrow{b}_{{n}} >\mathrm{0} \\ $$$$\left.{b}\right)\:{if}\:{a}_{{n}} >\mathrm{0}\forall{n}\in\mathbb{N}\:{if}\:\underset{{n}=\mathrm{0}}…

f-z-1-1-z-2-2-z-2-2-1-z-2-2-z-2-f-0-f-1-2-f-1-2-

Question Number 655 by 123456 last updated on 19/Feb/15 $${f}\left({z}\right)=\frac{\mathrm{1}−\frac{\mathrm{1}−{z}^{\mathrm{2}} }{\mathrm{2}+{z}^{\mathrm{2}} }}{\mathrm{2}+\frac{\mathrm{1}−{z}^{\mathrm{2}} }{\mathrm{2}+{z}^{\mathrm{2}} }} \\ $$$$\frac{{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)}{\mathrm{2}}−{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=? \\ $$ Answered by prakash jain last updated on…