Menu Close

Author: Tinku Tara

A-kite-is-a-quadrilateral-having-two-pairs-of-adjacent-sides-equal-Draw-a-semi-circle-inside-it-touching-all-the-sides-using-Eucledian-tools-Can-we-show-that-the-above-semi-circle-is-of-the-

Question Number 4225 by Rasheed Soomro last updated on 03/Jan/16 $$\:^{\bullet} \mathrm{A}\:\mathrm{kite}\:\mathrm{is}\:\mathrm{a}\:\mathrm{quadrilateral}\:\mathrm{having}\:\mathrm{two} \\ $$$$\mathrm{pairs}\:\mathrm{of}\:\mathrm{adjacent}\:\mathrm{sides}\:\mathrm{equal}. \\ $$$$\mathrm{Draw}\:\mathrm{a}\:\mathrm{semi}-\mathrm{circle}\:\mathrm{inside}\:\mathrm{it}\:\mathrm{touching} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{using}\:\mathrm{Eucledian}\:\mathrm{tools}. \\ $$$$\:^{\bullet} \:\mathrm{Can}\:\mathrm{we}\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\:\mathrm{above}\:\mathrm{semi}-\mathrm{circle} \\ $$$$\mathrm{is}\:\mathrm{of}\:\mathrm{the}\:\mathrm{laregest}\:\mathrm{possible}\:\mathrm{area}\:\mathrm{inside}\:\mathrm{the} \\ $$$$\mathrm{kite}?…

Six-free-hand-lines-are-drawn-inside-a-circle-in-order-to-divide-it-into-maximum-number-of-parts-Determine-this-number-Note-that-a-free-hand-line-has-following-three-properties-i-It-doesn-t-cut-

Question Number 4222 by Rasheed Soomro last updated on 02/Jan/16 $${Six}\:{free}-{hand}\:{lines}\:{are}\:{drawn}\:{inside} \\ $$$${a}\:{circle}\:{in}\:{order}\:{to}\:{divide}\:{it}\:{into}\:{maximum} \\ $$$${number}\:{of}\:{parts}.{Determine}\:{this}\:{number}. \\ $$$${Note}\:{that}\:{a}\:{free}-{hand}\:{line}\:{has}\:{following} \\ $$$$\:{three}\:\:{properties}: \\ $$$$\left.{i}\right)\:{It}\:{doesn}'{t}\:{cut}\:\:{itself}. \\ $$$$\left.{ii}\right){It}\:{joins}\:{two}\:{points}\:{of}\:{circle}. \\ $$$$\left.{iii}\right)\:{It}\:{can}\:{cut}\:{another}\:{line}\:{at}\:{most}\:{at}\:{three}…

Question-4219

Question Number 4219 by Yozzii last updated on 02/Jan/16 Answered by prakash jain last updated on 02/Jan/16 $${f}\:'\left(\theta\right)=\underset{\delta\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left(\theta+\delta\theta\right)−{f}\left(\theta\right)}{\delta\theta} \\ $$$$\mathrm{If}\:\mathrm{limit}\:\mathrm{exits} \\ $$$$\Rightarrow\underset{\delta\theta\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left(\theta+\delta\theta\right)={f}\left(\theta\right)+\underset{\delta\theta\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\:'\left(\theta\right)\delta\theta…

Determine-a-triplet-a-b-c-of-real-numbers-with-a-relation-a-1-b-1-c-1-and-satisfying-the-following-conditions-a-b-gt-c-b-c-gt-a-c-a-gt-b-

Question Number 4216 by Rasheed Soomro last updated on 02/Jan/16 $$\boldsymbol{\mathrm{D}}\mathrm{etermine}\:\mathrm{a}\:\mathrm{triplet}\:\left(\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}}\right)\:\mathrm{of}\:\mathrm{real}\:\mathrm{numbers}\: \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{relation}\:\boldsymbol{\mathrm{a}}^{−\mathrm{1}} +\boldsymbol{\mathrm{b}}^{−\mathrm{1}} =\boldsymbol{\mathrm{c}}^{−\mathrm{1}} \mathrm{and}\:\:\mathrm{satisfying}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{conditions} \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}>\boldsymbol{\mathrm{c}}\:\wedge\:\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}>\boldsymbol{\mathrm{a}}\:\wedge\:\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{a}}>\boldsymbol{\mathrm{b}}\:. \\ $$ Terms of Service…