Menu Close

Author: Tinku Tara

Sarah-dances-everyday-of-the-week-including-saturdays-and-sundays-In-november-2018-Sarah-had-to-miss-a-few-days-To-control-her-absences-she-marks-the-day-she-missed-class-with-a-x-on-the-calendar-

Question Number 69738 by Therealsincro last updated on 27/Sep/19 $${Sarah}\:{dances}\:{everyday}\:{of}\:{the}\:{week}, \\ $$$${including}\:{saturdays}\:{and}\:{sundays}. \\ $$$${In}\:{november}\:\mathrm{2018},\:{Sarah}\:{had}\:{to}\:{miss} \\ $$$${a}\:{few}\:{days}.\:{To}\:{control}\:{her}\:{absences} \\ $$$${she}\:{marks}\:{the}\:{day}\:{she}\:{missed}\:{class} \\ $$$${with}\:{a}\:\boldsymbol{{x}}\:{on}\:{the}\:{calendar}. \\ $$$${She}\:{marked}\:{the}\:\mathrm{5}{th},\:\mathrm{21}{st}\:{and}\:\mathrm{27}{th} \\ $$$${of}\:{november}. \\…

I-have-no-formal-background-in-number-theory-but-I-m-curious-of-how-to-find-positive-integer-solutions-x-y-z-to-the-equation-x-n-y-n-z-n-for-n-Z-Fermat-s-last-theorem-led-me-to-this-Tell

Question Number 4203 by Yozzii last updated on 01/Jan/16 $${I}\:{have}\:{no}\:{formal}\:{background}\:{in}\: \\ $$$${number}\:{theory},\:{but}\:{I}'{m}\:{curious} \\ $$$${of}\:{how}\:{to}\:{find}\:{positive}\:{integer}\:{solutions}\: \\ $$$$\left({x},{y},{z}\right)\:{to}\:{the}\:{equation}\:{x}^{{n}} +{y}^{{n}} ={z}^{{n}} \:{for}\: \\ $$$${n}\in\mathbb{Z}^{−} .\:{Fermat}'{s}\:{last}\:{theorem}\:{led} \\ $$$${me}\:{to}\:{this}.\:{Tell}\:{me}\:{about}\:{the}\:{cases} \\…

Q-4140-is-again-asked-with-following-changes-a-always-moves-towards-b-instead-of-b-b-always-moves-towards-c-instead-of-c-c-always-moves-towards-d-instead-of-d-d-always-moves-towards-

Question Number 4196 by Rasheed Soomro last updated on 31/Dec/15 $$\:\:\mathrm{Q}#\mathrm{4140}\:\mathrm{is}\:\mathrm{again}\:\mathrm{asked}\:\mathrm{with}\:\mathrm{following}\:\mathrm{changes}: \\ $$$$\boldsymbol{\mathrm{a}}\:\mathrm{always}\:\mathrm{moves}\:\mathrm{towards}\:\boldsymbol{\mathrm{b}}'\:\left({instead}\:{of}\:\boldsymbol{\mathrm{b}}\right), \\ $$$$\boldsymbol{\mathrm{b}}\:\mathrm{always}\:\mathrm{moves}\:\mathrm{towards}\:\boldsymbol{\mathrm{c}}'\:\left({instead}\:{of}\:\boldsymbol{\mathrm{c}}\right), \\ $$$$\boldsymbol{\mathrm{c}}\:\mathrm{always}\:\mathrm{moves}\:\mathrm{towards}\:\:\boldsymbol{\mathrm{d}}'\:\left({instead}\:{of}\:\boldsymbol{\mathrm{d}}\right),\: \\ $$$$\boldsymbol{\mathrm{d}}\:\mathrm{always}\:\mathrm{moves}\:\mathrm{towards}\:\:\boldsymbol{\mathrm{a}}'\:\left({instead}\:{of}\:\boldsymbol{\mathrm{a}}\right), \\ $$$$\mathrm{where}\:\boldsymbol{\mathrm{a}}',\boldsymbol{\mathrm{b}}',\boldsymbol{\mathrm{c}}'\:\mathrm{and}\:\boldsymbol{\mathrm{d}}'\:\mathrm{are}\:\mathrm{midpoints}\:\mathrm{of}\:\mathrm{line} \\ $$$$\mathrm{segments}\:\boldsymbol{\mathrm{ab}},\:\boldsymbol{\mathrm{bc}},\:\boldsymbol{\mathrm{cd}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{da}}\:\mathrm{respectively}. \\ $$…

x-2-3x-cos-x-dx-

Question Number 135259 by leena12345 last updated on 11/Mar/21 $$\int\left({x}^{\mathrm{2}} +\mathrm{3}{x}\right)\mathrm{cos}\:\left({x}\right){dx} \\ $$ Answered by Ar Brandon last updated on 11/Mar/21 $$\mathcal{I}=\int\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}\right)\mathrm{cosxdx} \\ $$$$\:\:\:=\left(\mathrm{x}^{\mathrm{2}}…

Question-135253

Question Number 135253 by otchereabdullai@gmail.com last updated on 11/Mar/21 Commented by mr W last updated on 11/Mar/21 $$\angle{YXZ}=\mathrm{90}°\:\Rightarrow{YX}=\sqrt{\mathrm{5}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }=\mathrm{4} \\ $$$${area}\:{of}\:\Delta{XYZ}=\frac{{YX}×{XZ}}{\mathrm{2}}=\frac{{YZ}×{XN}}{\mathrm{2}} \\ $$$$\Rightarrow{XN}=\frac{\mathrm{4}×\mathrm{3}}{\mathrm{5}}=\frac{\mathrm{12}}{\mathrm{5}} \\…

advanced-calculus-first-prove-that-1-0-1-ln-1-x-ln-1-x-x-dx-5-8-3-then-conclude-that-2-0-1-ln-2-1-

Question Number 135252 by mnjuly1970 last updated on 11/Mar/21 $$\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:\:{calculus}…. \\ $$$$\:\:\:\:{first}\:{prove}\:{that}::\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx}=\frac{−\mathrm{5}}{\mathrm{8}}\:\zeta\left(\mathrm{3}\right) \\ $$$$\:\:\:\:\:{then}\:{conclude}\:{that}:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}_{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{{x}}{dx}=\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{4}}…

Question-135254

Question Number 135254 by 0731619177 last updated on 11/Mar/21 Answered by Dwaipayan Shikari last updated on 11/Mar/21 $${I}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \left(\frac{{e}^{−{ax}^{\mathrm{2}} } −{e}^{−{bx}^{\mathrm{2}} } }{{x}}\right)^{\mathrm{2}} {dx}…