Question Number 66089 by Lalita 42@gmeilcon last updated on 09/Aug/19 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 552 by 123456 last updated on 25/Jan/15 $${proof}\:{that}\:\mathrm{log}_{\mathrm{2}} \mathrm{3}\:{is}\:{irrational} \\ $$ Answered by prakash jain last updated on 25/Jan/15 $$\mathrm{Let}\:\mathrm{us}\:\mathrm{say}\:\mathrm{log}_{\mathrm{2}} \mathrm{3}\:\mathrm{is}\:\mathrm{rational},\:\mathrm{then} \\ $$$$\mathrm{log}_{\mathrm{2}}…
Question Number 551 by 123456 last updated on 26/Jan/15 $${f}\left({z}\right)={z}\left({y}−{xi}\right) \\ $$$${z}={x}+{yi} \\ $$$$\frac{{df}}{{dz}}=? \\ $$ Answered by prakash jain last updated on 26/Jan/15 $${y}−{xi}=−{i}\left({x}+{iy}\right)=−{iz}…
Question Number 131620 by mohammad17 last updated on 06/Feb/21 Answered by Dwaipayan Shikari last updated on 06/Feb/21 $$\underset{{z}\rightarrow\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{3}}} } {\mathrm{lim}}\frac{{z}^{\mathrm{3}} +\mathrm{8}}{{z}^{\mathrm{4}} +\mathrm{4}{z}^{\mathrm{2}} +\mathrm{16}}=\underset{{z}\rightarrow\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{3}}} } {\mathrm{lim}}\frac{{z}+\mathrm{2}}{{z}^{\mathrm{2}}…
Question Number 66084 by F_Nongue last updated on 09/Aug/19 $${How}\:{to}\:{solve}\:{this}\:{limit}? \\ $$$$\underset{{x}\rightarrow\infty} {{lim}}\left(\mathrm{7}{x}+\frac{\mathrm{2}}{{x}}\right)^{{x}} \\ $$ Commented by mathmax by abdo last updated on 09/Aug/19 $${let}\:{A}\left({x}\right)\:=\left(\mathrm{7}{x}+\frac{\mathrm{2}}{{x}}\right)^{{x}}…
Question Number 131622 by rydasss last updated on 06/Feb/21 $${for}\:-\pi\:<\:{x}\:<\:-\:\frac{\pi}{\mathrm{2}}\:{find}\:{the}\:{solution}\:{of} \\ $$$${sin}\:{x}\:>\:\:\frac{{sin}\:{x}\:+\:\mathrm{2}}{\mathrm{2}\:{sin}\:{x}\:+\:\mathrm{1}} \\ $$ Answered by mr W last updated on 07/Feb/21 $$−\pi<{x}<−\frac{\pi}{\mathrm{2}}\:\Rightarrow\:−\mathrm{1}<\mathrm{sin}\:{x}<\mathrm{0} \\ $$$${case}\:\mathrm{1}:\:\mathrm{2sin}\:{x}+\mathrm{1}>\mathrm{0},\:{i}.{e}.\:\mathrm{sin}\:{x}>−\frac{\mathrm{1}}{\mathrm{2}}…
Question Number 66085 by mathmax by abdo last updated on 09/Aug/19 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{arctan}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}}}{dx} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 548 by 123456 last updated on 25/Jan/15 $${how}\:{many}\:{digits}\:{are}\:{in}\:{periodic}\:{part} \\ $$$${of}\:\frac{\mathrm{1}}{\mathrm{60}^{\mathrm{30}} } \\ $$ Answered by prakash jain last updated on 25/Jan/15 $$\frac{\mathrm{1}}{\left(\mathrm{60}\right)^{\mathrm{30}} }=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{30}}…
Question Number 66082 by aliesam last updated on 08/Aug/19 Commented by mathmax by abdo last updated on 09/Aug/19 $${let}\:{I}\:=\int_{−\infty} ^{+\infty} \:{xsin}\left({x}^{\mathrm{3}} \right){dx}\:\Rightarrow{I}\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:{x}\:{sin}\left({x}^{\mathrm{3}} \right){dx}…
Question Number 131619 by help last updated on 06/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com