Question Number 535 by kth last updated on 25/Jan/15 $$\int_{\mathrm{4}} ^{\mathrm{1}} \frac{\mathrm{2}}{\:\sqrt{{x}}} \\ $$ Answered by 13/NaSaNa(N)056565 last updated on 25/Jan/15 $$=\mathrm{2}\int_{\mathrm{4}} ^{\mathrm{1}} {x}^{\frac{−\mathrm{1}}{\mathrm{2}}} {dx}…
Question Number 66071 by AnjanDey last updated on 08/Aug/19 $$\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{as}\:\mathrm{a}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{sums}: \\ $$$$\mathrm{1}.\int_{\mathrm{1}} ^{\mathrm{3}} \left({e}^{\mathrm{2}−\mathrm{3}{x}} +{x}^{\mathrm{2}} +\mathrm{1}\right){dx} \\ $$ Answered by meme last updated on 08/Aug/19…
Question Number 532 by 123456 last updated on 25/Jan/15 $${if}\:{f}\:{is}\:{continuos}\:{and}\:{diferentiable} \\ $$$${everywhere}\:{on}\:\mathbb{R},\:{if}\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:{and} \\ $$$$\mid{f}'\left({x}\right)\mid\leqslant\mid{f}\left({x}\right)\mid\:{then}\:{proof}\:{that} \\ $$$${f}\left({x}\right)=\mathrm{0} \\ $$ Answered by prakash jain last updated on…
Question Number 66066 by Kunal12588 last updated on 08/Aug/19 $${Integrate}\:\int\frac{{dx}}{{ax}^{\mathrm{2}} +{bx}+{c}} \\ $$$${y}\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${y}'=\frac{{dy}}{{dx}}=\mathrm{2}{ax}+{b} \\ $$$${d}\:=\:\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}} \\ $$$${d}'\:=\:\sqrt{−{d}} \\ $$$${Case}\:\mathrm{1}.\:{d}^{\mathrm{2}} \:<\:\mathrm{0} \\…
Question Number 131603 by rs4089 last updated on 06/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66064 by mathmax by abdo last updated on 08/Aug/19 $${find}\:{the}\:{value}\:{of}\:\int_{−\infty} ^{+\infty} \:{cos}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right){dx} \\ $$ Commented by mathmax by abdo last updated on…
Question Number 529 by 8905571695 last updated on 25/Jan/15 $$ \\ $$ Answered by prakash jain last updated on 25/Jan/15 $$\mathrm{blank} \\ $$ Terms of…
Question Number 131602 by rs4089 last updated on 06/Feb/21 Answered by mnjuly1970 last updated on 06/Feb/21 $$\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{8}} \\ $$ Answered by mathmax by abdo last…
Question Number 66065 by mathmax by abdo last updated on 08/Aug/19 $${find}\:{the}\:{value}\:{of}\:{U}_{{n}} =\int_{−\infty} ^{+\infty} {e}^{−{nx}^{\mathrm{2}} } {sin}\left({x}^{\mathrm{2}} −\mathrm{2}{x}\right){dx} \\ $$$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:{U}_{{n}} \:{and}\:\Sigma{e}^{−{n}^{\mathrm{2}} } {U}_{{n}} \\ $$…
Question Number 66062 by mathmax by abdo last updated on 08/Aug/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{ch}\left({t}\right)+{xsh}\left({t}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dt}}{\left({ch}\left({t}\right)+{xsh}\left({t}\right)\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{{ch}\left({t}\right)+\mathrm{3}{sh}\left({t}\right)}\:{and}\:\int_{\mathrm{0}}…