Menu Close

Author: Tinku Tara

x-ln-1-x-dx-

Question Number 66048 by aliesam last updated on 08/Aug/19 $$\int\frac{{x}}{\:\sqrt{{ln}\left(\mathrm{1}/{x}\right)}}\:{dx} \\ $$ Commented by Prithwish sen last updated on 08/Aug/19 $$\int\frac{\mathrm{x}}{\:\sqrt{−\mathrm{lnx}}}\mathrm{dx}\:\:\:\mathrm{put}−\mathrm{lnx}\:=\:\mathrm{u}^{\mathrm{2}} \:\Rightarrow\mathrm{dx}=−\mathrm{2ue}^{−\mathrm{u}^{\mathrm{2}} } \\ $$$$=\:−\mathrm{2}\int\mathrm{e}^{−\mathrm{2u}^{\mathrm{2}}…

What-is-the-greatest-common-divisor-of-the-2010-digit-and-2005-digit-numbers-below-222-222-2010-of-twos-777-777-2005-of-sevens-

Question Number 513 by 112358 last updated on 25/Jan/15 $${What}\:{is}\:{the}\:{greatest}\:{common} \\ $$$${divisor}\:{of}\:{the}\:\mathrm{2010}\:{digit}\:{and}\:\mathrm{2005}\:{digit} \\ $$$${numbers}\:{below}? \\ $$$$\mathrm{222}…\mathrm{222}\:\left(\mathrm{2010}\:{of}\:{twos}\right) \\ $$$$\mathrm{777}…\mathrm{777}\:\left(\mathrm{2005}\:{of}\:{sevens}\right) \\ $$ Answered by prakash jain last…

nice-calculus-evaluate-0-sin-x-x-ln-a-cos-2-x-b-cos-2-x-dx-

Question Number 131581 by mnjuly1970 last updated on 06/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:\:\:{calculus}… \\ $$$$\:\:\:{evaluate}\::: \\ $$$$\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right)}{{x}}{ln}\left(\frac{{a}+{cos}^{\mathrm{2}} \left({x}\right)}{{b}+{cos}^{\mathrm{2}} \left({x}\right)}\right){dx}=? \\ $$$$ \\ $$ Commented…

Prove-or-disprove-n-0-1-n-2-97-2-2-97-e-97-e-97-2-388-e-2-97-1-e-2-97-1-37635-37636-1-388-97-

Question Number 131580 by Dwaipayan Shikari last updated on 06/Feb/21 $$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{disprove}} \\ $$$$\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{97}\right)^{\mathrm{2}} }=\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{97}\left(\boldsymbol{{e}}^{\boldsymbol{\pi}\sqrt{\mathrm{97}}} −{e}^{−\boldsymbol{\pi}\sqrt{\mathrm{97}}} \right)^{\mathrm{2}} }+\frac{\boldsymbol{\pi}}{\mathrm{388}}.\frac{{e}^{\mathrm{2}\boldsymbol{\pi}\sqrt{\mathrm{97}}} +\mathrm{1}}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{\pi}\sqrt{\mathrm{97}}} −\mathrm{1}}+\frac{\mathrm{37635}}{\mathrm{37636}}−\frac{\mathrm{1}}{\:\mathrm{388}\sqrt{\mathrm{97}}} \\ $$…