Menu Close

Author: Tinku Tara

Dear-Tinkutara-last-days-I-face-a-problem-Very-often-I-loose-all-my-work-when-saving-save-file-I-get-one-or-two-blank-lines-which-are-saved-in-the-relevant-file-I-use-v-2-286-android-12-api-l

Question Number 212921 by nikif99 last updated on 26/Oct/24 $${Dear}\:{Tinkutara} \\ $$$${last}\:{days}\:{I}\:{face}\:{a}\:{problem}: \\ $$$${Very}\:{often}\:{I}\:{loose}\:{all}\:{my}\:{work}\:{when} \\ $$$${saving}\:\left(“{save}\:{file}''\right).\:{I}\:{get}\:{one}\:{or} \\ $$$${two}\:{blank}\:{lines}\:{which}\:{are}\:{saved}\:{in} \\ $$$${the}\:{relevant}\:{file}. \\ $$$${I}\:{use}\:{v}.\mathrm{2}.\mathrm{286},\:{android}\:\mathrm{12},\:{api}\:{level}\:\mathrm{31}. \\ $$$${Any}\:{suggestion}\:{or}\:{update}\:{would}\:{be} \\…

If-positive-integer-x-y-gt-1-gcd-x-y-1-Positive-integer-n-satisfies-that-there-is-nononnegative-integer-a-and-b-makes-n-ax-by-If-true-what-is-the-maximum-n-

Question Number 212890 by MrGaster last updated on 26/Oct/24 $$\mathrm{If}\:\mathrm{positive}\:\mathrm{integer}\:{x}+,{y}>\mathrm{1},{gcd}\left({x},{y}\right)=\mathrm{1}, \\ $$$$\mathrm{Positive}\:\mathrm{integer}\:\mathrm{n}\:\mathrm{satisfies}\:\mathrm{that}\:\mathrm{there}\:\mathrm{is}\: \\ $$$$\mathrm{nononnegative}\:\mathrm{integer}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{makes}\:\mathrm{n}={ax}+{by}\: \\ $$$$\mathrm{If}\:\mathrm{true}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{n} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

The-expected-number-of-values-drawn-fromthe-interval-0-1-at-random-if-the-sum-ofthe-values-drawn-so-far-is-less-than-1-is-too-cntinue-drawing-what-is-the-expectede-numbr-of-draws-

Question Number 212918 by MrGaster last updated on 26/Oct/24 $$\mathrm{The}\:\mathrm{expected}\:\mathrm{number}\:\mathrm{of}\:\mathrm{values}\:\mathrm{drawn}\: \\ $$$$\mathrm{fromthe}\:\mathrm{interval}\left[\:\mathrm{0}\:,\mathrm{1}\right]\:\mathrm{at}\:\mathrm{random}\:\mathrm{if}\:\mathrm{the}\:\mathrm{sum}\: \\ $$$$\mathrm{ofthe}\:\mathrm{values}\:\mathrm{drawn}\:\mathrm{so}\:\mathrm{far}\:\mathrm{is}\:\mathrm{less}\:\mathrm{than}\:\mathrm{1},\:\mathrm{is}\:\mathrm{too} \\ $$$$\mathrm{cntinue}\:\mathrm{drawing}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{expectede} \\ $$$$\mathrm{numbr}\:\mathrm{of}\:\mathrm{draws} \\ $$ Terms of Service Privacy Policy…

sin10x-sin-x-dx-

Question Number 212886 by MrGaster last updated on 26/Oct/24 $$\int\frac{\mathrm{sin10}{x}}{\mathrm{sin}\:{x}}{dx}. \\ $$ Answered by Ghisom last updated on 26/Oct/24 $$\int\frac{\mathrm{sin}\:\mathrm{10}{x}}{\mathrm{sin}\:{x}}{dx}= \\ $$$$=\mathrm{4}\int\mathrm{cos}\:{x}\:\left(\mathrm{cos}\:\mathrm{8}{x}\:+\mathrm{cos}\:\mathrm{4}{x}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\right] \\…

Pls-i-need-a-help-from-Ordinary-differantial-Equation-t-2-y-2-t-t-y-1-t-t-2-2-y-t-0-we-Already-Know-Solution-y-t-C-1-J-t-C-2-J-t-But-J-t-can-t-Satisfy-as-Solutio

Question Number 212906 by issac last updated on 26/Oct/24 $$\mathrm{Pls}\:\mathrm{i}\:\mathrm{need}\:\mathrm{a}\:\mathrm{help}.. \\ $$$$\mathrm{from}\:\mathrm{Ordinary}\:\mathrm{differantial}\:\mathrm{Equation} \\ $$$${t}^{\mathrm{2}} {y}^{\left(\mathrm{2}\right)} \left({t}\right)+{t}\centerdot{y}^{\left(\mathrm{1}\right)} \left({t}\right)+\left({t}^{\mathrm{2}} −\nu^{\mathrm{2}} \right){y}\left({t}\right)=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{Already}\:\mathrm{Know} \\ $$$$\mathrm{Solution}\:{y}\left({t}\right)={C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}}…

dx-x-5-1-

Question Number 212896 by MrGaster last updated on 26/Oct/24 $$\int\frac{{dx}}{{x}^{\mathrm{5}} −\mathrm{1}} \\ $$ Commented by Frix last updated on 26/Oct/24 $${x}^{\mathrm{5}} −\mathrm{1}=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right) \\…

Question-212899

Question Number 212899 by vasil92 last updated on 26/Oct/24 Answered by MrGaster last updated on 02/Nov/24 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{{n}} }{dx}=\mathrm{1} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[{x}−\frac{{x}^{{n}−\mathrm{1}} }{\left({n}+\mathrm{1}\right)\centerdot^{\mathrm{2}}…