Question Number 212651 by hardmath last updated on 20/Oct/24 Answered by Ghisom last updated on 20/Oct/24 $${x}+\mathrm{3}{y}+\mathrm{5}{z}\leqslant\mathrm{15} \\ $$$${x}+{y}+{z}\leqslant\mathrm{7} \\ $$$$\mathrm{2}{x}+{y}+\mathrm{4}{z}\leqslant\mathrm{12} \\ $$$$======== \\ $$$${x}+\mathrm{3}{y}+\mathrm{5}{z}\leqslant\mathrm{15}…
Question Number 212645 by efronzo1 last updated on 20/Oct/24 $$\:\:\begin{cases}{\mathrm{x}=\mathrm{2}+\:\mathrm{log}\:_{\mathrm{2}} \mathrm{log}\:_{\mathrm{2}} \mathrm{y}}\\{\mathrm{y}=\mathrm{2}\:\mathrm{log}\:_{\mathrm{2}} \mathrm{z}\:}\\{\mathrm{z}=\mathrm{2}+\:\mathrm{log}\:_{\mathrm{2}} \:\mathrm{log}\:_{\mathrm{2}} \mathrm{x}\:}\end{cases} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212646 by MrGaster last updated on 20/Oct/24 $$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{{j}={i}} {\overset{{i}} {\sum}}\frac{{i}\left({i}+{j}\right)}{\left({n}^{\mathrm{2}} +{i}^{\mathrm{2}} \right)\left({n}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)} \\ $$ Commented by…
Question Number 212647 by golsendro last updated on 20/Oct/24 $$\:\:\:\sqrt{\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}}\:+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}}}\:=\:\mathrm{x}\: \\ $$ Commented by Rasheed.Sindhi last updated on 21/Oct/24 $${See}\:{also}\:{Q}#\mathrm{200498} \\ $$ Answered by Frix…
Question Number 212643 by ajfour last updated on 20/Oct/24 $${Guess}\:{we}\:{can}\:{make}\:{youtube}\: \\ $$$${educational}\:{videos}\:{using}\:{this}\: \\ $$$${forum}'{s}\:{editor}\:{in}\:{offline}\:{mode}. \\ $$$${Tinkutara}\:{team},\:{let}\:{me}\:{know}. \\ $$$${I}\:{alresdy}\:{made}\:{one}..{here} \\ $$ Commented by ajfour last updated…
Question Number 212635 by Nadirhashim last updated on 19/Oct/24 $$\:\:\boldsymbol{{m}}\leqslant\underset{\mathrm{1}} {\overset{\mathrm{3}} {\int}}\frac{\mathrm{1}\:}{\:\sqrt{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{7}\:}}\:.\boldsymbol{{dx}}\leqslant\boldsymbol{{k}}\:\boldsymbol{{find}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{constant}} \\ $$$$\:\:\boldsymbol{{m}}\:\boldsymbol{{and}}\:\boldsymbol{{k}} \\ $$ Commented by Ghisom last updated on…
Question Number 212630 by efronzo1 last updated on 19/Oct/24 Commented by efronzo1 last updated on 19/Oct/24 $$\:\: \\ $$ Answered by mr W last updated…
Question Number 212626 by Ghisom last updated on 19/Oct/24 $$\mathrm{let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\left({x}−{a}\right)\left({x}−{b}\right)\left({x}−{c}\right)}} \\ $$$$\mathrm{let}\:{a},\:{b},\:{c}\:\in\mathbb{R}\:\wedge{a}<{b}<{c} \\ $$$$\Rightarrow\:{D}\left({f}\left({x}\right)\right)=\left({a},\:{b}\right)\cup\left({c},\:\infty\right) \\ $$$$\mathrm{prove}\:\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}=\underset{{c}} {\overset{\infty} {\int}}{f}\left({x}\right){dx} \\ $$ Answered by MrGaster…
Question Number 212627 by MrGaster last updated on 19/Oct/24 $$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{1}\centerdot\mathrm{2}}}{{n}^{\mathrm{2}} +\mathrm{1}}+\frac{\sqrt{\mathrm{2}\centerdot\mathrm{3}}}{{n}^{\mathrm{2}} +\mathrm{2}}+\ldots+\frac{\sqrt{{n}\left({n}+\mathrm{1}\right)}}{{n}^{\mathrm{2}} +{n}}\right) \\ $$ Answered by mehdee7396 last updated on 19/Oct/24…
Question Number 212621 by mr W last updated on 19/Oct/24 $$\mathrm{A}\:\mathrm{group}\:\mathrm{of}\:\boldsymbol{\mathrm{n}}\:\mathrm{people}\:\mathrm{are}\:\mathrm{standing}\:\mathrm{in} \\ $$$$\mathrm{a}\:\mathrm{circle}.\:\:\mathrm{They}\:\mathrm{are}\:\mathrm{numbered}\:\mathrm{with}\: \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{etc}.\:\mathrm{Starting}\:\mathrm{with}\:\mathrm{the}\:\mathrm{person} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{number}\:\mathrm{1},\:\mathrm{every}\:\mathrm{second}\: \\ $$$$\mathrm{person}\:\mathrm{is}\:\mathrm{removed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{and}\: \\ $$$$\mathrm{this}\:\mathrm{process}\:\mathrm{continues}\:\mathrm{until}\:\mathrm{only}\:\mathrm{one}\: \\ $$$$\mathrm{person}\:\mathrm{remains}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circle}.\:\:\mathrm{What} \\ $$$$\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{the}\:\mathrm{last}\:\mathrm{person}…