Question Number 211207 by Etimbuk last updated on 31/Aug/24 Answered by mr W last updated on 03/Sep/24 $${e}_{\mathrm{1}} ={a}+{b}+{c}+{d} \\ $$$${e}_{\mathrm{2}} ={ab}+{bc}+{cd}+{da}+{ac}+{bd} \\ $$$${e}_{\mathrm{3}} ={abc}+{bcd}+{cda}+{dab}…
Question Number 211216 by Jubr last updated on 31/Aug/24 Answered by nikif99 last updated on 31/Aug/24 Commented by Jubr last updated on 31/Aug/24 $${Thank}\:{you}\:{sir} \\…
Question Number 211201 by efronzo1 last updated on 31/Aug/24 $$\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{1}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}}\:−\sqrt[{\mathrm{3}}]{\mathrm{2x}−\mathrm{3}}\:=\:\mathrm{0} \\ $$$$\:\:\:\mathrm{x}=? \\ $$ Answered by Rasheed.Sindhi last updated on 31/Aug/24 $$\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{1}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}}\:−\sqrt[{\mathrm{3}}]{\mathrm{2x}−\mathrm{3}}\:=\:\mathrm{0} \\ $$$$\because−\sqrt[{\mathrm{3}}]{\mathrm{2x}−\mathrm{3}}\:=\sqrt[{\mathrm{3}}]{\mathrm{3}−\mathrm{2x}} \\…
Question Number 211167 by cherokeesay last updated on 30/Aug/24 Commented by Frix last updated on 30/Aug/24 $$\mathrm{12} \\ $$ Answered by som(math1967) last updated on…
Question Number 211188 by Ari last updated on 30/Aug/24 Answered by mr W last updated on 30/Aug/24 $${AB}={x} \\ $$$${BC}={y} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{12}^{\mathrm{2}} \\…
Question Number 211157 by RojaTaniya last updated on 30/Aug/24 Commented by Rasheed.Sindhi last updated on 30/Aug/24 $$\left({x},{y},{z}\right)=\left(\mathrm{1},\mathrm{0},\mathrm{0}\right),\left(\mathrm{0},\mathrm{1},\mathrm{0}\right),\left(\mathrm{0},\mathrm{0},\mathrm{1}\right) \\ $$ Answered by Rasheed.Sindhi last updated on…
Question Number 211190 by mr W last updated on 30/Aug/24 Answered by A5T last updated on 31/Aug/24 $${Let}\:\angle{BCD}=\angle{CBD}=\theta\Rightarrow\angle{DBA}=\mathrm{90}°−\theta \\ $$$$\Rightarrow\angle{ADB}=\mathrm{90}°−\theta\Rightarrow\angle{DAB}=\mathrm{2}\theta \\ $$$$\angle{BCA}=\angle{CAB}=\mathrm{45}°\Rightarrow\angle{ACD}=\mathrm{45}°−\theta\Rightarrow?=\mathrm{45}°−\mathrm{2}\theta \\ $$$${Let}\:{CD}={BD}={x}\:{and}\:{AD}={AB}={BC}={y} \\…
Question Number 211191 by Tawa11 last updated on 30/Aug/24 Answered by mm1342 last updated on 30/Aug/24 $$\left(\left(\mathrm{2}^{{x}} \right)^{{y}} \right)^{{x}} =\left(\mathrm{3}^{{y}} \right)^{{z}} =\mathrm{7}^{{z}} =\mathrm{11}\:\checkmark \\ $$$$…
Question Number 211184 by nothing48 last updated on 30/Aug/24 Answered by mm1342 last updated on 30/Aug/24 $${x}={sinu} \\ $$$$\Rightarrow\int{sin}^{\mathrm{3}} {udu}=\int\left(\mathrm{1}−{cos}^{\mathrm{2}} {u}\right){sinudu} \\ $$$$=−{cosu}+\frac{\mathrm{1}}{\mathrm{3}}{cos}^{\mathrm{3}} {u}+{c} \\…
Question Number 211155 by Spillover last updated on 30/Aug/24 $$\int\frac{\left(\mathrm{sin}\:^{{n}} \left(\theta\right)−\mathrm{sin}\:\left(\theta\right)\right)^{\frac{\mathrm{1}}{{n}}} \mathrm{cos}\:\left(\theta\right)}{\mathrm{sin}\:^{{n}+\mathrm{1}} \left(\theta\right)}{d}\theta \\ $$$$ \\ $$ Answered by Frix last updated on 30/Aug/24 $$=\int\frac{{d}\theta}{\mathrm{sin}\:\theta}\:−\int\left(\mathrm{sin}\:\theta\right)^{\frac{\mathrm{1}−{n}−{n}^{\mathrm{2}}…