Question Number 210996 by RojaTaniya last updated on 25/Aug/24 Answered by Frix last updated on 26/Aug/24 $$\mathrm{Only}\:\mathrm{true}\:\mathrm{for}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:>\mathrm{0}: \\ $$$${x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} +\mathrm{6}{x}^{\mathrm{2}} +\mathrm{9}{x}=\mathrm{4}{x}^{\mathrm{2}}…
Question Number 210958 by RojaTaniya last updated on 24/Aug/24 Commented by Ghisom last updated on 26/Aug/24 $$\mathrm{I}\:\mathrm{get} \\ $$$${x}=\frac{\mathrm{36}}{\mathrm{25}}\wedge{y}=\frac{\mathrm{64}}{\mathrm{25}} \\ $$$${x}=−\frac{\mathrm{7}}{\mathrm{16}}+\frac{\mathrm{3}}{\mathrm{2}}\mathrm{i}\wedge{y}=\frac{\mathrm{63}}{\mathrm{400}}−\frac{\mathrm{27}}{\mathrm{50}}\mathrm{i} \\ $$$${x}=−\frac{\mathrm{7}}{\mathrm{16}}−\frac{\mathrm{3}}{\mathrm{2}}\mathrm{i}\wedge{y}=\frac{\mathrm{63}}{\mathrm{400}}+\frac{\mathrm{27}}{\mathrm{50}}\mathrm{i} \\ $$…
Question Number 210969 by universe last updated on 24/Aug/24 $$\:\:\:\:\mathrm{if}\:\mathrm{a}_{\mathrm{n}} \:=\:\mathrm{n}^{\mathrm{4}} \int_{\mathrm{n}} ^{\mathrm{n}+\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{5}} }\:\:\mathrm{then} \\ $$$$\:\:\:\:\left(\mathrm{1}\right)\:\Sigma\mathrm{a}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{convergent}\:\mathrm{or}\:\mathrm{divergent}?? \\ $$$$\:\:\:\:\left(\mathrm{2}\right)\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\mathrm{n}\:} \:=\:?? \\ $$ Terms…
Question Number 210967 by mahdipoor last updated on 24/Aug/24 $${Q}.\mathrm{210956} \\ $$$${im}\:{read}\:{leithold}\:{book}\:{again}\:,\:{in}\:{this}\:{book}\:: \\ $$$$\left.\mathrm{1}\right\}{define}\::\:{ln}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} {dx}/{x}\:\:\:\:\:\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right\}{define}\::\:{ln}\left({e}\right)=\mathrm{1}=\int_{\mathrm{1}} ^{\:{e}} {dx}/{x} \\ $$$$\left.\mathrm{3}\right\}{define}\::\:{exp}\left({x}\right)={y}\:\Leftrightarrow\:{ln}\left({y}\right)={x} \\ $$$$\frac{{d}\left({ln}\left({u}\right)\right)}{{du}}=\frac{\mathrm{1}}{{u}}\:\Rightarrow\:\frac{{d}\left({ln}\left({u}\right)\right)}{{dx}}=\frac{{du}/{dx}}{{u}}\:\Rightarrow \\…
Question Number 210961 by RojaTaniya last updated on 24/Aug/24 Answered by A5T last updated on 24/Aug/24 $$\frac{{a}−\mathrm{1}+\mathrm{2}}{{a}−\mathrm{1}}+\frac{{b}−\mathrm{1}+\mathrm{2}}{{b}−\mathrm{1}}+\frac{{c}−\mathrm{1}+\mathrm{2}}{{c}−\mathrm{1}}=\mathrm{10} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{a}−\mathrm{1}}+\frac{\mathrm{1}}{{b}−\mathrm{1}}+\frac{\mathrm{1}}{{c}−\mathrm{1}}=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$${a}+{b}+{c}=\mathrm{0};{ab}+{bc}+{ca}=\frac{{m}−\mathrm{1}}{{m}};{abc}=\frac{−{m}−\mathrm{1}}{{m}} \\ $$$$\Rightarrow\frac{{ab}+{bc}+{ca}−\mathrm{2}\left({a}+{b}+{c}\right)+\mathrm{3}}{{abc}−{ab}−{bc}−{ac}+{a}+{b}+{c}−\mathrm{1}}=\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\frac{{m}−\mathrm{1}+\mathrm{3}{m}}{{m}}}{\frac{−{m}−\mathrm{1}+\mathrm{1}−{m}−{m}}{{m}}}=\frac{\mathrm{7}}{\mathrm{2}}\Rightarrow\frac{\mathrm{4}{m}−\mathrm{1}}{−\mathrm{3}{m}}=\frac{\mathrm{7}}{\mathrm{2}}…
Question Number 210956 by mahdipoor last updated on 23/Aug/24 $${we}\:{define}\::\:{ln}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} \frac{{dx}}{{x}} \\ $$$${how}\:{prove}\::\:{ln}\left({x}\right)={log}_{{e}} {x}\:\:\:? \\ $$ Commented by Ghisom last updated on 24/Aug/24 $$\mathrm{an}\:\mathrm{idea}:…
Question Number 210948 by cherokeesay last updated on 23/Aug/24 Commented by cherokeesay last updated on 23/Aug/24 $$\mathrm{If}\:\mathrm{only}\:\mathrm{the}\:\mathrm{result}\:\mathrm{is}\:\mathrm{accompanied}\:\mathrm{by}\:\mathrm{a} \\ $$$$\mathrm{diagam}\:\mathrm{it}\:\mathrm{will}\:\mathrm{be}\:\mathrm{perfect}. \\ $$$${thanks}. \\ $$ Answered by…
Question Number 210940 by MrGHK last updated on 22/Aug/24 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left({x}\right){tanh}^{−\mathrm{1}} \left({x}\right){log}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 210926 by maths_plus last updated on 22/Aug/24 $$\mathrm{valeur}\:\mathrm{de}\::\: \\ $$$$\mathrm{tan}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{7}}\right)+\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{tan}^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:=\:??? \\ $$ Commented by mr W last updated on 22/Aug/24…
Question Number 210927 by zhou0429 last updated on 22/Aug/24 Terms of Service Privacy Policy Contact: info@tinkutara.com