Question Number 210769 by zhou0429 last updated on 19/Aug/24 Commented by Frix last updated on 19/Aug/24 $$\int\frac{{dx}}{{x}^{{n}} +\mathrm{1}}={x}×_{\mathrm{2}} {F}_{\mathrm{1}} \:\left(\mathrm{1},\:\frac{\mathrm{1}}{{n}};\:\frac{{n}+\mathrm{1}}{{n}};\:−{x}^{{n}} \right)\:+{C} \\ $$ Terms of…
Question Number 210824 by hardmath last updated on 19/Aug/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 210820 by Ghisom last updated on 19/Aug/24 $$\mathrm{prove} \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\mathrm{arctan}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$ Answered by BHOOPENDRA last updated…
Question Number 210788 by liuxinnan last updated on 19/Aug/24 $${s}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}} \\ $$$$\mathrm{2}{s}={s}−\mathrm{1} \\ $$$${s}=\mathrm{1}\:? \\ $$$$\:{how}\:{to}\:{explain}\:{it} \\ $$$${and}\:{how}\:{to}\:{judge}\:{which}\:{case}\:{can}\:{use}\:{this}\:{way} \\ $$ Answered by Berbere…
Question Number 210789 by peter frank last updated on 19/Aug/24 Answered by mr W last updated on 19/Aug/24 $${Area}\:{of}\:{sector}\:{O}\overset{\frown} {{PQ}}: \\ $$$${A}_{\mathrm{1}} =\frac{\theta}{\mathrm{2}\pi}×\pi{r}^{\mathrm{2}} =\frac{{r}^{\mathrm{2}} \theta}{\mathrm{2}}…
Question Number 210816 by lmcp1203 last updated on 19/Aug/24 Commented by lmcp1203 last updated on 19/Aug/24 $${find}\:{k}\:>\mathrm{0}\:{and}\:{integer}\:{minimum}.\:{thanks} \\ $$$${sen}={sine} \\ $$$${cos}={cosine} \\ $$ Answered by…
Question Number 210786 by zhou0429 last updated on 19/Aug/24 Answered by Berbere last updated on 19/Aug/24 $${x}^{\mathrm{9}} +\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{\mathrm{8}} {\prod}}\left({x}−{e}^{{i}\pi\left(\frac{\mathrm{1}+\mathrm{2}{k}}{\mathrm{9}}\right)} \right)={p}\left({x}\right) \\ $$$$=\Sigma\int\frac{\mathrm{1}}{\left({x}−{e}^{{i}\pi\left(\frac{\mathrm{1}+\mathrm{2}{k}}{\mathrm{9}}\right)} \right){p}'\left({e}^{{i}\pi\left(\frac{\mathrm{1}+\mathrm{2}{k}}{\mathrm{9}}\right)} \right)}{dx}…
Question Number 210787 by mnjuly1970 last updated on 19/Aug/24 $$ \\ $$$$\:\begin{cases}{\:\:\mathrm{I}{f},\:\mathrm{D}\::\:{x}^{\mathrm{2}} \:+{y}^{\:\mathrm{2}} \:+\:{z}^{\:\mathrm{2}} \leqslant\mathrm{1}}\\{\:\Rightarrow\int\underset{\overset{} {\mathrm{D}}} {\int}\int\frac{\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\:\mathrm{2}} }{{x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\:{dxdydz}=?}\end{cases} \\ $$$$ \\…
Question Number 210737 by mathlove last updated on 18/Aug/24 $${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:{then} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{1}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{1}}\right)+…..+{f}\left(\frac{\mathrm{100}}{\mathrm{1}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$+{f}\left(\frac{\mathrm{2}}{\mathrm{2}}\right)+…+{f}\left(\frac{\mathrm{100}}{\mathrm{2}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{100}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{100}}\right) \\ $$$$+……+{f}\left(\frac{\mathrm{100}}{\mathrm{100}}\right)=? \\ $$ Answered by mr W last…
Question Number 210765 by shhhh last updated on 18/Aug/24 Answered by Berbere last updated on 19/Aug/24 $$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}}\\{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{9}\Rightarrow−\mathrm{6}{x}=−\mathrm{4}}\end{cases} \\ $$$${x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${y}^{\mathrm{2}}…