Menu Close

Author: Tinku Tara

Question-210769

Question Number 210769 by zhou0429 last updated on 19/Aug/24 Commented by Frix last updated on 19/Aug/24 $$\int\frac{{dx}}{{x}^{{n}} +\mathrm{1}}={x}×_{\mathrm{2}} {F}_{\mathrm{1}} \:\left(\mathrm{1},\:\frac{\mathrm{1}}{{n}};\:\frac{{n}+\mathrm{1}}{{n}};\:−{x}^{{n}} \right)\:+{C} \\ $$ Terms of…

Question-210786

Question Number 210786 by zhou0429 last updated on 19/Aug/24 Answered by Berbere last updated on 19/Aug/24 $${x}^{\mathrm{9}} +\mathrm{1}=\underset{{k}=\mathrm{0}} {\overset{\mathrm{8}} {\prod}}\left({x}−{e}^{{i}\pi\left(\frac{\mathrm{1}+\mathrm{2}{k}}{\mathrm{9}}\right)} \right)={p}\left({x}\right) \\ $$$$=\Sigma\int\frac{\mathrm{1}}{\left({x}−{e}^{{i}\pi\left(\frac{\mathrm{1}+\mathrm{2}{k}}{\mathrm{9}}\right)} \right){p}'\left({e}^{{i}\pi\left(\frac{\mathrm{1}+\mathrm{2}{k}}{\mathrm{9}}\right)} \right)}{dx}…

If-D-x-2-y-2-z-2-1-D-x-2-2y-2-x-2-4y-2-z-2-dxdydz-

Question Number 210787 by mnjuly1970 last updated on 19/Aug/24 $$ \\ $$$$\:\begin{cases}{\:\:\mathrm{I}{f},\:\mathrm{D}\::\:{x}^{\mathrm{2}} \:+{y}^{\:\mathrm{2}} \:+\:{z}^{\:\mathrm{2}} \leqslant\mathrm{1}}\\{\:\Rightarrow\int\underset{\overset{} {\mathrm{D}}} {\int}\int\frac{\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\:\mathrm{2}} }{{x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\:{dxdydz}=?}\end{cases} \\ $$$$ \\…

f-x-x-2-x-2-1-then-f-1-1-f-2-1-f-100-1-f-1-2-f-2-2-f-100-2-f-1-100-f-2-100-f-100-100-

Question Number 210737 by mathlove last updated on 18/Aug/24 $${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:{then} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{1}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{1}}\right)+…..+{f}\left(\frac{\mathrm{100}}{\mathrm{1}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$+{f}\left(\frac{\mathrm{2}}{\mathrm{2}}\right)+…+{f}\left(\frac{\mathrm{100}}{\mathrm{2}}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{100}}\right)+{f}\left(\frac{\mathrm{2}}{\mathrm{100}}\right) \\ $$$$+……+{f}\left(\frac{\mathrm{100}}{\mathrm{100}}\right)=? \\ $$ Answered by mr W last…

Question-210765

Question Number 210765 by shhhh last updated on 18/Aug/24 Answered by Berbere last updated on 19/Aug/24 $$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4}}\\{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{9}\Rightarrow−\mathrm{6}{x}=−\mathrm{4}}\end{cases} \\ $$$${x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${y}^{\mathrm{2}}…