Menu Close

Author: Tinku Tara

L-tsin-t-

Question Number 223006 by mnjuly1970 last updated on 12/Jul/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\mathscr{L}\:\:\left\{\:{tsin}\left(\sqrt{{t}}\:\right)\right\}=? \\ $$ Answered by MrGaster last updated on 12/Jul/25 $$\mathscr{L}\:\:\left\{\:{tsin}\left(\sqrt{{t}}\:\right)\right\}=\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {t}\:\mathrm{sin}\left(\sqrt{{t}}\right){dt}…

Question-222974

Question Number 222974 by gabthemathguy25 last updated on 12/Jul/25 Answered by MrGaster last updated on 12/Jul/25 $${P}_{\mathrm{100}} =\mathrm{min}\left\{{x}\in\mathbb{N}\mid\underset{{k}=\mathrm{1}} {\overset{{x}} {\sum}}\underset{{i}=\mathrm{2}} {\overset{\lfloor\sqrt{{k}}\rfloor} {\prod}}\left(\mathrm{1}−\delta\left({k}\:\mathrm{mod}\:{i}\right)\right)\geq\mathrm{101}\right\} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{540}}…

everyone-or-Mr-Gaster-Please-help-me-how-to-sove-the-integral-Because-the-integral-is-very-crazy-or-very-Complicated-Problem-0-1-ln-x-1-l

Question Number 223007 by Nicholas666 last updated on 12/Jul/25 $$ \\ $$$$\:\:\:\:\:\:\mathrm{everyone}\:\mathrm{or}\:\mathrm{Mr}.\:\mathrm{Gaster}\:! \\ $$$$\:\:\:\:\:\:\:\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{how}\:\mathrm{to}\:\mathrm{sove}\:\mathrm{the}\:\mathrm{integral}\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Because}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{very}\:\mathrm{crazy}\:\mathrm{or}\:\mathrm{very}\:\mathrm{Complicated} \\ $$$$\:\:\:\:\:\:\mathrm{Problem}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{ln}\left({x}−\mathrm{1}\right)\:\mathrm{ln}\left({x}+\mathrm{1}\right)\:\mathrm{ln}\:\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:\mathrm{d}{x}\:=??? \\…

n-1-1-e-n-1-n-n-1-n-e-pi-2-1-6-A-6-

Question Number 223000 by MrGaster last updated on 12/Jul/25 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{1}}{{e}}\left(\frac{{n}+\mathrm{1}}{{n}}\right)^{{n}} \right)^{\left(−\mathrm{1}\right)^{{n}} } =\frac{{e}\centerdot\sqrt{\pi}\centerdot\sqrt[{\mathrm{6}}]{\mathrm{2}}}{{A}^{\mathrm{6}} } \\ $$ Commented by MathematicalUser2357 last updated on 22/Jul/25…

Question-222995

Question Number 222995 by Jubr last updated on 12/Jul/25 Answered by mr W last updated on 12/Jul/25 $${T}={tension}\:{string}\:{around}\:{the}\:{pulley} \\ $$$${A}={acceleration}\:{of}\:{block}\:{M} \\ $$$${a}={acceleration}\:{of}\:{block}\:{m} \\ $$$${assume}\:{there}\:{is}\:{no}\:{friction}. \\…