Menu Close

Author: Tinku Tara

Question-227249

Question Number 227249 by Spillover last updated on 10/Jan/26 Answered by breniam last updated on 10/Jan/26 $$\frac{{x}−{y}\left({x}\right)+\mathrm{1}}{{x}+{y}\left({x}\right)−\mathrm{1}}=−\mathrm{1}+\frac{\mathrm{2}{x}+\mathrm{1}}{{x}+{y}\left({x}\right)−\mathrm{1}} \\ $$$${z}\left({x}\right)={x}+{y}\left({x}\right) \\ $$$${y}\left({x}\right)={z}\left({x}\right)−{x} \\ $$$${y}'\left({x}\right)={z}'\left({x}\right)−\mathrm{1} \\ $$$${z}'\left({x}\right)−\mathrm{1}=−\mathrm{1}+\frac{\mathrm{2}{x}+\mathrm{1}}{{z}\left({x}\right)−\mathrm{1}}…

Question-227250

Question Number 227250 by Spillover last updated on 10/Jan/26 Answered by breniam last updated on 10/Jan/26 $${z}\left({x}\right)={x}+{y}\left({x}\right) \\ $$$${y}\left({x}\right)={z}\left({x}\right)−{x} \\ $$$${y}'\left({x}\right)={z}'\left({x}\right)−\mathrm{1} \\ $$$${z}\left({x}\right)\left({z}'\left({x}\right)−\mathrm{1}\right)=\mathrm{2}{x}−{z}\left({x}\right)+\mathrm{2} \\ $$$${z}'\left({x}\right){z}\left({x}\right)=\mathrm{2}\left({x}+\mathrm{1}\right)…

x-1-6-x-1-6-or-x-1-6-x-7-x-5-s-1-7-s-2-5-s-5-U-7-R-5-7-

Question Number 227236 by AlanMuhamad last updated on 09/Jan/26 $$\mid{x}−\mathrm{1}\mid\geqslant\mathrm{6} \\ $$$${x}−\mathrm{1}\geqslant\mathrm{6}\:\:\:\:\:{or}\:\:\:\:\:{x}−\mathrm{1}\leqslant−\mathrm{6} \\ $$$${x}\geqslant\mathrm{7}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}\leqslant−\mathrm{5} \\ $$$${s}_{\mathrm{1}} =\left[\mathrm{7},+\infty\right)\:\:\:\:\:\:\:\:{s}_{\mathrm{2}} =\left(−\infty,−\mathrm{5}\right] \\ $$$${s}=\left(−\infty,−\mathrm{5}\right]\:{U}\:\left[\mathrm{7},+\infty\right) \\ $$$${R}/\left(−\mathrm{5}\:,\:\mathrm{7}\:\right) \\ $$ Terms…

Essaie-de-corriger-sur-la-trigos-Exercice-2-1-Montrons-que-x-R-cos-6-x-sin-6-x-1-8-5-3cos4x-Soit-x-R-On-a-cos

Question Number 227238 by as_ last updated on 09/Jan/26 $$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boldsymbol{\mathrm{Essaie}}\:\boldsymbol{\mathrm{de}}\:\boldsymbol{\mathrm{corriger}}\:\boldsymbol{\mathrm{sur}}\:\boldsymbol{\mathrm{la}}\:\boldsymbol{\mathrm{trigos}}}\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boldsymbol{\mathrm{Exercice}}}\:\mathrm{2}\:: \\ $$$$\:\:\:\mathrm{1}-\underline{\mathrm{Montrons}\:\mathrm{que}}\::\:\forall\mathrm{x}\in\mathbb{R},\:\mathrm{cos}^{\mathrm{6}} \mathrm{x}+\mathrm{sin}^{\mathrm{6}} \mathrm{x}=\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{5}+\mathrm{3cos4x}\right)\:\:\:\:\: \\ $$$$\:\:\mathrm{Soit}\:\mathrm{x}\in\mathbb{R},\:\:\mathrm{On}\:\mathrm{a}\::\: \\…

64-8pi-4pi-8pi-4-tan-1-2-4tan-1-1-2-2-8-pi-2-64-16pi-8pi-16-tan-1-2-4tan-1-1-2-2-3-2-2-32tan-1-4-8-6-4-32sin-tan-1-4-8-6-4-pi-4-tan-1-2-4tan-1-1-2-

Question Number 227232 by fantastic2 last updated on 07/Jan/26 $$\left(\mathrm{64}−\left(\mathrm{8}\pi+\mathrm{4}\pi\right)\right)−\left(\mathrm{8}\pi−\left(\mathrm{4}\left(\mathrm{tan}^{−\mathrm{1}} \mathrm{2}+\mathrm{4tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)+\mathrm{8}\left(\pi−\mathrm{2}\right)\right)\right)−\left(\mathrm{64}−\left(\mathrm{16}\pi+\mathrm{8}\pi−\mathrm{16}\left(\mathrm{tan}^{−\mathrm{1}} \mathrm{2}+\mathrm{4tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)\right)\right)−\left(\mathrm{3}.\mathrm{2}+\mathrm{2}+\left(\mathrm{32tan}^{−\mathrm{1}} \frac{\mathrm{4}.\mathrm{8}}{\mathrm{6}.\mathrm{4}}−\mathrm{32sin}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}.\mathrm{8}}{\mathrm{6}.\mathrm{4}}\right)−\pi\right)+\mathrm{4}\left(\mathrm{tan}^{−\mathrm{1}} \mathrm{2}+\mathrm{4tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right) \\ $$ Terms of Service Privacy Policy…