Menu Close

Author: Tinku Tara

Question-210234

Question Number 210234 by peter frank last updated on 03/Aug/24 Commented by Pnk2024 last updated on 03/Aug/24 $$\:{we}\:{know}\:{that} \\ $$$$\:\:{sin}^{\mathrm{2}} \theta+{cos}^{\mathrm{2}} \theta=\mathrm{1} \\ $$$$\Rightarrow\:\:{cos}^{\mathrm{2}} \theta=\mathrm{1}−{sin}^{\mathrm{2}}…

Question-210235

Question Number 210235 by peter frank last updated on 03/Aug/24 Commented by Pnk2024 last updated on 03/Aug/24 $$\bigtriangleup{ADB}\:\sim\bigtriangleup{EFB}\:\:\:\:….\:\left({A}−{A}\:{test}\right) \\ $$$$\Rightarrow\:\frac{{y}}{{x}}\:=\:\frac{{AB}}{{EB}}\:\:\:…….\:\left({C}.{S}.{S}.{T}\right) \\ $$$${again} \\ $$$$\bigtriangleup{BCA}\sim\bigtriangleup{EFA} \\…

Question-210229

Question Number 210229 by mnjuly1970 last updated on 03/Aug/24 Answered by a.lgnaoui last updated on 03/Aug/24 $$\mathrm{8}=\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{b}}^{\mathrm{3}} +\mathrm{6}\boldsymbol{\mathrm{ab}} \\ $$$$ \\ $$$$\mathrm{16}=\left(\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\mathrm{4}\right)+\left(\boldsymbol{\mathrm{b}}^{\mathrm{3}} +\mathrm{4}\right)+\mathrm{6}\boldsymbol{\mathrm{ab}}\:\:\:…

Resoudre-dans-R-acos-x-bsin-x-c-x-0-sin-1-sin-x-d-1-d-1-

Question Number 210231 by a.lgnaoui last updated on 03/Aug/24 $$\mathrm{Resoudre}\:\boldsymbol{\mathrm{dans}}\:\mathbb{R} \\ $$$$\begin{cases}{\boldsymbol{\mathrm{a}}\mathrm{cos}\:\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{b}}\mathrm{sin}\:\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{c}}\:\:\:\:\:\left(\boldsymbol{\mathrm{x}}\neq\mathrm{0}\right)}\\{\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{sin}\:\boldsymbol{\mathrm{x}}}\right)\:\:\:\:\:\:\:\:\:=\boldsymbol{\mathrm{d}}\:\:\:\:\left(−\mathrm{1}\leqslant\boldsymbol{\mathrm{d}}\leqslant+\mathrm{1}\right)}\end{cases} \\ $$$$ \\ $$ Commented by mr W last updated on 04/Aug/24 $${they}\:{are}\:{two}\:{different}\:{equations}\:{for}…

Prove-that-n-4-n-1-2-1-n-n-0-t-n-e-t-dt-n-2-

Question Number 210200 by Erico last updated on 02/Aug/24 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\forall\mathrm{n}\geqslant\mathrm{4}\:\:\:\:\:\:\:\mathrm{n}!\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}\right)\:\leqslant\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{n}} \mathrm{t}^{\mathrm{n}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt}\:\leqslant\:\frac{\mathrm{n}!}{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com