Menu Close

Author: Tinku Tara

Question-210172

Question Number 210172 by efronzo1 last updated on 01/Aug/24 Answered by a.lgnaoui last updated on 02/Aug/24 $$\frac{\mathrm{sin}\:\mathrm{2}\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{BE}}}=\frac{\mathrm{cos}\:\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{AB}}}\:\:\:\:\left(\measuredangle\mathrm{AED}=\mathrm{90}−\mathrm{2a}\right) \\ $$$$\mathrm{AB}=\frac{\mathrm{DEcos}\:\boldsymbol{\mathrm{a}}}{\mathrm{sin}\:\mathrm{2}\boldsymbol{\mathrm{a}}}.=\frac{\boldsymbol{\mathrm{BE}}}{\mathrm{2sin}\:\boldsymbol{\mathrm{a}}} \\ $$$$\boldsymbol{\mathrm{Aire}}\left(\boldsymbol{\mathrm{ABC}}\right)=\boldsymbol{\mathrm{Air}}\mathrm{e}\left(\boldsymbol{\mathrm{ADFC}}\right)+\boldsymbol{\mathrm{Aire}}\left(\boldsymbol{\mathrm{DBF}}\right) \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{ire}\left(\mathrm{BDE}\right)=\mathrm{Aire}\left(\boldsymbol{\mathrm{BEF}}\right)+\boldsymbol{\mathrm{Aire}}\left(\boldsymbol{\mathrm{BDF}}\right) \\ $$$$\Rightarrow\:…

Question-210156

Question Number 210156 by Spillover last updated on 01/Aug/24 Answered by A5T last updated on 01/Aug/24 $$\left({i}\right)+\mathrm{2}×\left({ii}\right)\Rightarrow{x}=\frac{\mathrm{8}−\mathrm{7}{z}}{\mathrm{7}}=\frac{\mathrm{8}}{\mathrm{7}}−{z} \\ $$$$\left({iii}\right)+\left({i}\right)\Rightarrow\mathrm{7}{x}+\left({a}^{\mathrm{2}} −\mathrm{9}\right){z}={a}+\mathrm{4} \\ $$$$\Rightarrow{x}=\frac{−\left({a}^{\mathrm{2}} −\mathrm{9}\right){z}+{a}+\mathrm{4}}{\mathrm{7}} \\ $$$$\Rightarrow\frac{\mathrm{4}−{a}}{\mathrm{7}}=\frac{\left(\mathrm{16}−{a}^{\mathrm{2}}…

Question-210157

Question Number 210157 by Spillover last updated on 01/Aug/24 Answered by A5T last updated on 01/Aug/24 $${Let}\:{distance}\:{of}\:{vertex},{V},\:{to}\:{centroid},{G},\:{be}\:{GV} \\ $$$$\Rightarrow\frac{{sin}\mathrm{30}°}{{GV}}=\frac{{sin}\mathrm{120}^{°} }{{x}}\Rightarrow{GV}=\frac{\frac{{x}}{\mathrm{2}}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}=\frac{{x}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${H}=\sqrt{{x}^{\mathrm{2}} −{GV}^{\mathrm{2}} }=\sqrt{{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{2}}…

Question-210142

Question Number 210142 by Abdullahrussell last updated on 01/Aug/24 Commented by Frix last updated on 02/Aug/24 $$\mathrm{I}\:\mathrm{think}\:\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:“\mathrm{nice}''\:\mathrm{solution}: \\ $$$${x}=\frac{\mathrm{3}}{\mathrm{2}}−\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\mathrm{i}\:\:\:\:\:{y}=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\mathrm{i}\:\:\:\:\:{z}=\mathrm{3} \\ $$$$\Rightarrow\:{x}+{y}+{z}=\mathrm{6} \\ $$$$\mathrm{But}\:\mathrm{there}\:\mathrm{should}\:\mathrm{be}\:\mathrm{more}\:\mathrm{solutions}\:\mathrm{with} \\ $$$${x}+{y}+{z}\in\mathbb{R}…

Find-lim-n-n-n-2-4-n-k-1-n-2k-1-2-4-

Question Number 210171 by hardmath last updated on 01/Aug/24 $$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow+\infty} {\mathrm{lim}}\:\:\frac{\mathrm{n}}{\left(\mathrm{n}!\right)^{\mathrm{2}} \:\mathrm{4}^{\boldsymbol{\mathrm{n}}} }\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\prod}}\:\left(\left(\mathrm{2k}−\mathrm{1}\right)^{\mathrm{2}} \:+\:\mathrm{4}\right)\:=\:? \\ $$ Terms of Service Privacy Policy…