Question Number 213579 by Spillover last updated on 09/Nov/24 Commented by Ghisom last updated on 09/Nov/24 $$\mathrm{question}\:\mathrm{213397} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 213589 by hardmath last updated on 09/Nov/24 $$\mathrm{Find}: \\ $$$$\frac{\left(\mathrm{3}\:-\:\frac{\mathrm{3}}{\mathrm{4}}\right)\centerdot\left(\mathrm{3}\:-\:\frac{\mathrm{3}}{\mathrm{5}}\right)\centerdot\left(\mathrm{3}\:-\:\frac{\mathrm{1}}{\mathrm{2}}\right)\centerdot\left(\mathrm{3}\:-\:\frac{\mathrm{3}}{\mathrm{7}}\right)\centerdot…\centerdot\left(\mathrm{3}\:-\:\frac{\mathrm{1}}{\mathrm{6}}\right)}{\mathrm{27}^{\mathrm{5}} }\:=\:? \\ $$ Answered by issac last updated on 09/Nov/24 $$\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{15}} \underset{{h}=\mathrm{1}} {\overset{\mathrm{15}}…
Question Number 213573 by mr W last updated on 09/Nov/24 Commented by mr W last updated on 09/Nov/24 $${find}\:{r}=? \\ $$ Commented by ajfour last…
Question Number 213575 by Spillover last updated on 09/Nov/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213548 by universe last updated on 08/Nov/24 $$\mathrm{0}<{c}<\mathrm{1}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{recursive}\:\mathrm{sequence} \\ $$$$\left\{{a}_{{n}} \right\}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{setting}\: \\ $$$$\:\mathrm{a}_{\mathrm{1}\:} =\:\frac{\mathrm{c}}{\mathrm{2}}\:\:,\:{a}_{\mathrm{n}+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{c}+\mathrm{a}_{\mathrm{n}} ^{\mathrm{2}} \right)\:\:\mathrm{for}\:\mathrm{n}\in\:\mathbb{N} \\ $$$$\mathrm{monotonic}\:\mathrm{and}\:\mathrm{convergent} \\ $$ Answered by…
Question Number 213550 by mr W last updated on 08/Nov/24 Commented by mr W last updated on 08/Nov/24 $${semicircle} \\ $$ Answered by A5T last…
Question Number 213556 by ajfour last updated on 08/Nov/24 Commented by ajfour last updated on 08/Nov/24 $${Find}\:{radius}. \\ $$ Answered by A5T last updated on…
Question Number 213555 by issac last updated on 08/Nov/24 $${f}\left({z}\right)=\underset{{j}=−\infty} {\overset{\infty} {\sum}}\:\frac{{z}}{{z}^{\mathrm{2}} +{j}^{\mathrm{2}} }\:,\:{z}\in\left(\mathrm{0},\infty\right) \\ $$$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({z}\right)=?? \\ $$ Answered by lepuissantcedricjunior last updated on…
Question Number 213534 by mr W last updated on 07/Nov/24 Commented by York12 last updated on 07/Nov/24 $$\mathrm{110} \\ $$ Answered by ajfour last updated…
Question Number 213535 by justenspi last updated on 07/Nov/24 $$\mathrm{Are}\:\mathrm{not}\:\mathrm{there}\:\mathrm{simple}\:\mathrm{means}\:\mathrm{of}\:\mathrm{solving}\:\mathrm{this} \\ $$$$\mathrm{system}\:\mathrm{of}\:\mathrm{equations}\:\mathrm{in}\:\mathrm{non}-\mathrm{negative}\:\mathrm{reals} \\ $$ Commented by justenspi last updated on 07/Nov/24 Terms of Service Privacy…