Menu Close

Author: Tinku Tara

Question-209932

Question Number 209932 by cherokeesay last updated on 26/Jul/24 Answered by mahdipoor last updated on 26/Jul/24 $${BD}^{\mathrm{2}} =\mathrm{100}+\mathrm{49}−\mathrm{140}{cosC}=\mathrm{121}+\mathrm{64}−\mathrm{176}{cosA} \\ $$$$\frac{{BD}}{{sinC}}=\frac{{BD}}{{sinA}}=\mathrm{2}{R}\:\Rightarrow{C}+{A}=\mathrm{180} \\ $$$$\Rightarrow\mathrm{149}−\mathrm{140}{cosC}=\mathrm{185}−\mathrm{176}{cosA} \\ $$$$\Rightarrow{cosC}=\frac{\mathrm{185}−\mathrm{149}}{−\mathrm{176}−\mathrm{140}}=−\frac{\mathrm{9}}{\mathrm{79}} \\…

If-f-x-x-x-x-find-d-dx-f-x-

Question Number 209924 by OmoloyeMichael last updated on 26/Jul/24 $$\boldsymbol{{If}}\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\left(\boldsymbol{{x}}!\right)\centerdot\left(\boldsymbol{{x}}!!\right)\centerdot\left(\boldsymbol{{x}}!!!\right)\:\: \\ $$$$\boldsymbol{{find}}\:\:\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\left(\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\right)=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

lim-n-1-3n-1-1-3n-2-1-4n-

Question Number 209926 by depressiveshrek last updated on 26/Jul/24 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{2}}+…+\frac{\mathrm{1}}{\mathrm{4}{n}} \\ $$ Commented by Frix last updated on 26/Jul/24 $$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}{n}+{k}}\:={H}_{\mathrm{4}{n}} −{H}_{\mathrm{3}{n}} \\…