Menu Close

Author: Tinku Tara

1-sin-40-cos-40-1-sin-40-cos-40-

Question Number 209781 by alusto22 last updated on 21/Jul/24 $$\:\:\:\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{40}°−\mathrm{cos}\:\mathrm{40}°}{\mathrm{1}+\mathrm{sin}\:\mathrm{40}°+\mathrm{cos}\:\mathrm{40}°}\:=? \\ $$ Answered by efronzo1 last updated on 21/Jul/24 $$\:\:\:\:\frac{\mathrm{1}+\mathrm{sin}\:\mathrm{40}°−\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \mathrm{20}°\right)}{\mathrm{1}+\mathrm{sin}\:\mathrm{40}°+\mathrm{2cos}\:^{\mathrm{2}} \mathrm{20}−\mathrm{1}}\: \\ $$$$\:\:=\:\frac{\mathrm{2sin}\:\mathrm{20}°\left(\mathrm{cos}\:\mathrm{20}°+\mathrm{sin}\:\mathrm{20}°\right)}{\mathrm{2cos}\:\mathrm{20}°\left(\mathrm{cos}\:\mathrm{20}°+\mathrm{sin}\:\mathrm{20}°\right)} \\…

Express-tan-3-in-surd-form-

Question Number 209768 by OmoloyeMichael last updated on 20/Jul/24 $$\boldsymbol{{Express}}\:\boldsymbol{{tan}}\left(\mathrm{3}\right)\:\boldsymbol{{in}}\:\boldsymbol{{surd}}\:\boldsymbol{{form}} \\ $$ Answered by Frix last updated on 22/Jul/24 $$\mathrm{tan}\:\left(\alpha−\beta\right)\:=\frac{\mathrm{tan}\:\alpha\:−\mathrm{tan}\:\beta}{\mathrm{1}+\mathrm{tan}\:\alpha\:\mathrm{tan}\:\beta} \\ $$$$\mathrm{Use}\:\alpha=\mathrm{18}°\:\mathrm{and}\:\beta=\mathrm{15}°.\:\mathrm{The}\:\mathrm{only}\:\mathrm{problem}\:\mathrm{is} \\ $$$$\mathrm{to}\:\mathrm{factorize}\:\mathrm{it}… \\…

Q-Choose-at-least-some-members-frome-the-set-A-14-15-20-22-23-28-so-that-whith-confidence-includes-three-consecutive-members-

Question Number 209746 by MM42 last updated on 21/Jul/24 $$\left.{Q}\right){Choose}\:{at}\:{least}\:{some}\:{members} \\ $$$${frome}\:{the}\:{set}\:{A}=\left\{\mathrm{14},\mathrm{15},…,\mathrm{20},\mathrm{22},\mathrm{23},…,\mathrm{28}\right\} \\ $$$${so}\:{that}\:{whith}\:{confidence}\:\:{includes}\:{three}\:{consecutive} \\ $$$${members}? \\ $$ Commented by MM42 last updated on 20/Jul/24…

Question-209763

Question Number 209763 by Ismoiljon_008 last updated on 20/Jul/24 Commented by Ismoiljon_008 last updated on 20/Jul/24 $$\:\:\:\mathscr{F}{ind}\:{the}\:{number}\:{of}\:{roots}\:{of}\:{the}\:{following} \\ $$$$\:\:\:{equation}\:{in}\:{the}\:{interval}\:\left[\:−\mathrm{2}\pi;\mathrm{2}\pi\:\right] \\ $$$$\:\:\:{help}\:{please} \\ $$ Answered by…