Menu Close

Author: Tinku Tara

Question-209602

Question Number 209602 by peter frank last updated on 16/Jul/24 Answered by som(math1967) last updated on 16/Jul/24 $$\:{let}\:{number}={x} \\ $$$$\:\frac{\mathrm{120}{x}}{\mathrm{100}}\:−\frac{\mathrm{85}{x}}{\mathrm{100}}=\mathrm{14} \\ $$$$\:\frac{\mathrm{35}{x}}{\mathrm{100}}=\mathrm{14} \\ $$$$\Rightarrow{x}=\frac{\mathrm{14}×\mathrm{100}}{\mathrm{35}}=\mathrm{40} \\…

If-a-n-gt-0-and-lim-n-a-n-0-Find-lim-n-1-n-k-1-n-ln-k-n-a-n-

Question Number 209580 by hardmath last updated on 15/Jul/24 $$\mathrm{If}\:\:\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} >\mathrm{0}\:\:\:\mathrm{and}\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:=\:\mathrm{0} \\ $$$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{n}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\mathrm{ln}\:\left(\frac{\mathrm{k}}{\mathrm{n}}\:+\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \right)\:=\:? \\ $$ Answered by mr W…

select-some-s-and-find-the-corresponding-N-s-of-the-series-n-1-1-2-n-klipto-quanta-

Question Number 209576 by klipto last updated on 15/Jul/24 $$\boldsymbol{\mathrm{select}}\:\boldsymbol{\mathrm{some}}\:\boldsymbol{\epsilon}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{corresponding}} \\ $$$$\boldsymbol{\mathrm{N}}'\boldsymbol{\mathrm{s}}?\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{series}}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\boldsymbol{\mathrm{n}}} } \\ $$$$\boldsymbol{\mathrm{klipto}}−\boldsymbol{\mathrm{quanta}} \\ $$ Terms of Service Privacy…

Question-209550

Question Number 209550 by Tony6400 last updated on 14/Jul/24 Answered by Berbere last updated on 15/Jul/24 $$\left.{x}\in\right]−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\left[={I};\forall{x}\in{I}\:{cos}\left({x}\right)\geqslant\mathrm{0}\right. \\ $$$$\mathrm{1}+{e}^{−{x}} \geqslant\mathrm{1}\Rightarrow\forall{x}\in{I}\:\:{cos}\left({x}\right)\geqslant\frac{{cos}\left({x}\right)}{\mathrm{1}+{e}^{−{x}} } \\ $$$$\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left({f}\left({x}\right)−{g}\left({x}\right)\right){dx}=\mathscr{A}=\int_{−\frac{\pi}{\mathrm{2}}}…

In-the-triangle-ABC-cos-B-C-1-3-Show-that-1-3cos-B-C-6sinBcosC-tanC-

Question Number 209560 by MM42 last updated on 15/Jul/24 $${In}\:{the}\:{triangle}\:{ABC}\:;\:{cos}\left({B}−{C}\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${Show}\:{that}\::\:\:\frac{\mathrm{1}−\mathrm{3}{cos}\left({B}+{C}\right)}{\mathrm{6}{sinBcosC}}={tanC} \\ $$$$ \\ $$ Answered by Spillover last updated on 14/Jul/24 $$\:\:\frac{\mathrm{1}−\mathrm{3}×\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{6}{sinBcosC}}={tanC} \\…