Question Number 213841 by mnjuly1970 last updated on 18/Nov/24 $$ \\ $$$$\:\:{Find}\:{the}\:{vertical}\:{asymptots} \\ $$$$\: \\ $$$$\:\:{of}\:\:,\:\:\:{f}\left({x}\right)=\:\mathrm{tan}\left(\frac{\:\pi}{\mathrm{2}{x}\:+\:\mathrm{2}}\:\right)\:\:{in}\: \\ $$$$\: \\ $$$$\:\:\:\:\:\left[\:\mathrm{0}\:\:,\:\:\:\mathrm{4}\:\right] \\ $$$$\:−−−−−−−−−−−−− \\ $$$$ \\…
Question Number 213821 by hardmath last updated on 17/Nov/24 $$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sinx}}{\mathrm{x}}\right)^{\frac{\mathrm{sinx}}{\mathrm{x}\:−\:\mathrm{sinx}}} \:\:=\:\:? \\ $$ Answered by mehdee7396 last updated on 17/Nov/24 $${lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{{sinx}}{{x}}−\mathrm{1}\right)\frac{{sinx}}{{x}−{sinx}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}}…
Question Number 213803 by muallimRiyoziyot last updated on 17/Nov/24 Commented by Frix last updated on 17/Nov/24 $$\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{solutions}\:\mathrm{but}\:\mathrm{the} \\ $$$$\mathrm{exact}\:\mathrm{form}\:\mathrm{is}\:\mathrm{not}\:\mathrm{useable}. \\ $$$${x}\approx\mathrm{1}.\mathrm{32848492}\pm.\mathrm{570204126i} \\ $$ Commented by…
Question Number 213791 by hardmath last updated on 16/Nov/24 $$\mathrm{If}\:\:\:\mathrm{x}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{4}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:=\:\:\mathrm{10} \\ $$$$\mathrm{Find}\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:+\:\:\mathrm{3}\:\:=\:\:? \\ $$ Commented by muallimRiyoziyot last updated on 19/Nov/24 $${x}−\mathrm{8}=\sqrt[{\mathrm{3}}]{{x}}+\mathrm{2}+\frac{\mathrm{4}}{\:\sqrt[{\mathrm{3}}]{{x}}} \\ $$$$\left(\sqrt[{\mathrm{3}}]{{x}}−\mathrm{2}\right)\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }+\mathrm{2}\sqrt[{\mathrm{3}}]{{x}}+\mathrm{4}\right)=\frac{\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}}…
Question Number 213751 by hardmath last updated on 15/Nov/24 $$\mathrm{m}\:;\:\mathrm{n}\:\in\:\mathbb{Z}_{+} \\ $$$$\mathrm{2m}^{\mathrm{2}} \:+\:\mathrm{n}^{\mathrm{2}} \:−\:\mathrm{mn}\:=\:\mathrm{54} \\ $$$$ \\ $$$$\mathrm{1}.\:\left(\mathrm{m};\mathrm{n}\right)=? \\ $$$$\mathrm{2}.\:\left(\mathrm{m};\mathrm{n}\right)=? \\ $$$$……………. \\ $$ Commented…
Question Number 213726 by hardmath last updated on 14/Nov/24 $$\mathrm{ax}\:=\:\mathrm{by}\:=\:\mathrm{cz}\:=\:\mathrm{36} \\ $$$$\frac{\mathrm{1}}{\mathrm{x}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{y}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{z}}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:=\:? \\ $$ Answered by Rasheed.Sindhi last updated on 14/Nov/24 $${a}=\frac{\mathrm{36}}{{x}},\:{b}=\frac{\mathrm{36}}{{y}},\:{c}=\frac{\mathrm{36}}{{z}} \\…
Question Number 213721 by a.lgnaoui last updated on 14/Nov/24 $$\boldsymbol{\mathrm{Resoudre}}\:\boldsymbol{\mathrm{le}}\:\boldsymbol{\mathrm{systeme}}\:\boldsymbol{\mathrm{d}}'\:\boldsymbol{\mathrm{equations}}: \\ $$$$\begin{cases}{\left(\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)\boldsymbol{\mathrm{xy}}=\mathrm{84}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} \:\:\:\:\:\:=\mathrm{25}}\end{cases} \\ $$ Answered by golsendro last updated on 14/Nov/24 $$\:\:\:\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{2xy}=\:\mathrm{x}^{\mathrm{2}}…
Question Number 213705 by hardmath last updated on 14/Nov/24 Answered by MathematicalUser2357 last updated on 14/Nov/24 $$\mathrm{3} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 213661 by Spillover last updated on 13/Nov/24 Commented by MathematicalUser2357 last updated on 14/Nov/24 $$\: \\ $$ Answered by mahdipoor last updated on…
Question Number 213693 by hardmath last updated on 13/Nov/24 $$\mathrm{Find}: \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{7}°\:\mathrm{44}'\:\mathrm{22},\mathrm{54}''\right)\centerdot\mathrm{800} \\ $$ Commented by Ghisom last updated on 13/Nov/24 $$\mathrm{use}\:\mathrm{a}\:\mathrm{calculator} \\ $$$$\approx\mathrm{14}.\mathrm{5090174}…