Question Number 199109 by mnjuly1970 last updated on 28/Oct/23 $$ \\ $$$$\:{Q}:\:\:\:\:\alpha\:,\:\beta\:,\gamma\:{are}\:{the}\:{roots}\:{of}\:{the}\:{following} \\ $$$$\:\:\:\:\:{equation}\:.\:{find}\:{the}\:{value}\:{of}: \\ $$$$ \\ $$$$\:\:\:\:\:{Eq}^{\:{n}} \::\:\:\:{x}^{\:\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{2}=\mathrm{0} \\ $$$$\:\:\:{E}\:=\:\frac{\alpha}{\beta\:+\gamma}\:+\frac{\beta}{\alpha\:+\gamma}\:+\frac{\gamma}{\alpha+\:\beta} \\ $$$$…
Question Number 199170 by tri26112004 last updated on 28/Oct/23 $${n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{3}} +\mathrm{2}{n}^{\mathrm{2}} +{n}+\mathrm{7}\:=\:{a}^{\mathrm{2}} \:\left({a}\in{N}\right) \\ $$$$\rightarrow{n}=¿\:\left({n}\in{N}\right) \\ $$ Commented by Rasheed.Sindhi last updated on 31/Oct/23…
Question Number 199033 by essaad last updated on 27/Oct/23 Commented by essaad last updated on 27/Oct/23 $${mr}\:\:{W}\:{could}\:{you}\:{please}\:{help}\:{us}\: \\ $$ Commented by mr W last updated…
Question Number 199092 by necx122 last updated on 27/Oct/23 $${Let}\:{the}\:{polynomial}\:{p}\left({x}\right)=\mathrm{5}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10} \\ $$$${have}\:{roots}\:{a},{b}\:{and}\:{c}.\:{What}\:{is}\:{the}\:{value} \\ $$$${of}\:\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}? \\ $$ Answered by Rasheed.Sindhi last updated on 28/Oct/23…
Question Number 198968 by necx122 last updated on 26/Oct/23 $${Find}\:{the}\:{polynomial}\:{with}\:{roots}\:{that} \\ $$$${exceed}\:{the}\:{roots}\:{of}\: \\ $$$${f}\left({x}\right)=\mathrm{3}{x}^{\mathrm{3}} −\mathrm{14}{x}^{\mathrm{2}} +{x}+\mathrm{62}=\mathrm{0}\:{by}\:\mathrm{3}.\:{Hence} \\ $$$${determine}\:{the}\:{value}\:{of}\:\frac{\mathrm{1}}{{a}+\mathrm{3}}+\frac{\mathrm{1}}{{b}+\mathrm{3}}+\frac{\mathrm{1}}{{c}+\mathrm{3}}, \\ $$$${where}\:{a},{b}\:{and}\:{c}\:{are}\:{roots}. \\ $$ Answered by Rasheed.Sindhi…
Question Number 198954 by ArifinTanjung last updated on 26/Oct/23 $$\:\mathrm{Convert}\:\mathrm{this}\:\mathrm{decimal}\:\mathrm{number}\:\mathrm{to}\: \\ $$$$\:\:\mathrm{praction}\:\mathrm{number} \\ $$$$\mathrm{1}.\:\mathrm{0}.\mathrm{3333}…\:=… \\ $$$$\mathrm{2}.\:\:\mathrm{2}.\mathrm{1111}…=… \\ $$$$\mathrm{3}.\:\mathrm{0}.\mathrm{1313}….=… \\ $$ Answered by Rasheed.Sindhi last updated…
Question Number 199015 by Tawa11 last updated on 26/Oct/23 Answered by Rasheed.Sindhi last updated on 26/Oct/23 $$\sqrt{{a}−{x}}\:+\sqrt{{b}−{x}}\:+\sqrt{{c}−{x}}\:=\mathrm{0} \\ $$$$\sqrt{{a}−{x}}\:=\mathrm{0}\:\wedge\:\sqrt{{b}−{x}}\:=\mathrm{0}\:\wedge\:\sqrt{{c}−{x}}\:=\mathrm{0} \\ $$$${x}={a}={b}={c} \\ $$$$\left({a}+{b}+{c}+\mathrm{3}{x}\right)\left({a}+{b}+{c}−{x}\right)=\mathrm{4}\left({bc}+{ca}+{ab}\right) \\ $$$$\left({x}+{x}+{x}+\mathrm{3}{x}\right)\left({x}+{x}+{x}−{x}\right)=\mathrm{4}\left({x}.{x}+{x}.{x}+{x}.{x}\right)…
Question Number 198951 by ArifinTanjung last updated on 26/Oct/23 $$\sqrt{\mathrm{8}+\sqrt{\mathrm{48}}\:}=….? \\ $$ Commented by mr W last updated on 26/Oct/23 $${are}\:{you}\:{serious}? \\ $$$${you}\:{ask}\:{both}\:{this}\:\sqrt{\mathrm{8}+\sqrt{\mathrm{48}}\:}=…. \\ $$$${and}\:{this}\:\int_{\mathrm{1}}…
Question Number 198902 by necx122 last updated on 25/Oct/23 $${Given}\:{that}\:{k}^{\mathrm{2}} −\mathrm{3}{k}+\mathrm{5}=\mathrm{0},\:{determine} \\ $$$${the}\:{value}\:{of}\:{k}^{\mathrm{4}} −\mathrm{6}{k}^{\mathrm{3}} +\mathrm{9}{k}^{\mathrm{2}} −\mathrm{7} \\ $$ Answered by witcher3 last updated on 25/Oct/23…
Question Number 198903 by necx122 last updated on 25/Oct/23 $${Find}\:{the}\:{minimum}\:{value}\:{of}\: \\ $$$$\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}\:{for}\:{all}\:{positive}\:{real} \\ $$$${numbers} \\ $$ Commented by necx122 last updated on 25/Oct/23 please I need help with this Answered…