Question Number 198132 by a.lgnaoui last updated on 11/Oct/23 $${Solve}: \\ $$$$\frac{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{\mathrm{x}}−\mathrm{5}\right)}{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)}=\mathrm{2} \\ $$ Answered by som(math1967) last updated on 11/Oct/23 $${log}\left({x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{5}\right)=\mathrm{2}{log}\left({x}+\mathrm{2}\right) \\…
Question Number 198131 by a.lgnaoui last updated on 11/Oct/23 $$\mathrm{Resoudre} \\ $$$$\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}−\mathrm{3}\right)+\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right)=\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{x}}−\mathrm{21}\right) \\ $$$$ \\ $$ Answered by Rasheed.Sindhi last updated on 11/Oct/23 $$\mathrm{log}\left(\mathrm{x}−\mathrm{3}\right)+\mathrm{log}\left(\mathrm{x}−\mathrm{2}\right)=\mathrm{log}\left(\mathrm{x}^{\mathrm{2}}…
Question Number 198147 by mr W last updated on 11/Oct/23 $${if}\:{a},{x},{y},{b}\:{is}\:{an}\:{AP}\:{and}\:{a},{p},{q},{b}\:{is}\:{a}\:{GP}. \\ $$$${prove}\:{that}\:{xy}\geqslant{pq}. \\ $$$$\left({with}\:{a},\:{b}\:>\mathrm{0}\right) \\ $$ Answered by AST last updated on 11/Oct/23 $${p}^{\mathrm{2}}…
Question Number 198103 by mr W last updated on 10/Oct/23 $${solve}\:{for}\:{x},\:{y}\:\in{N} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\sqrt{\mathrm{2023}} \\ $$ Answered by Safojon last updated on 10/Oct/23 $$\sqrt{\mathrm{7}}+\mathrm{16}\sqrt{\mathrm{7}}=\sqrt{\mathrm{2023}} \\ $$$$\mathrm{2}\sqrt{\mathrm{7}}+\mathrm{15}\sqrt{\mathrm{7}}=\sqrt{\mathrm{2023}}…
Question Number 198123 by a.lgnaoui last updated on 10/Oct/23 $$\mathrm{Determiner} \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{3}} \:\frac{\boldsymbol{\mathrm{x}}−\mathrm{3}}{\:^{\mathrm{3}} \sqrt{\boldsymbol{\mathrm{x}}+\mathrm{5}}\:−\mathrm{2}} \\ $$$$ \\ $$ Answered by Mathspace last updated on 10/Oct/23…
Question Number 198063 by mr W last updated on 10/Oct/23 $${solve}\:{for}\:{x},\:{y}\:\in{R} \\ $$$$\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}+\sqrt{{y}^{\mathrm{2}} −\mathrm{6}{y}+\mathrm{9}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}}+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xy}}=\mathrm{4} \\ $$ Answered by witcher3 last updated…
Question Number 198050 by akolade last updated on 09/Oct/23 Answered by mr W last updated on 10/Oct/23 $$\mathrm{2}^{{x}} =\mathrm{3}^{{y}} ={k},\:{say} \\ $$$$\Rightarrow{x}=\frac{\mathrm{log}\:{k}}{\mathrm{log}\:\mathrm{2}},\:{y}=\frac{\mathrm{log}\:{k}}{\mathrm{log}\:\mathrm{3}} \\ $$$$\frac{\mathrm{2}×\mathrm{log}\:\mathrm{2}+\mathrm{3}×\mathrm{log}\:\mathrm{3}}{\mathrm{log}\:{k}}=\mathrm{1} \\…
Question Number 198040 by akolade last updated on 08/Oct/23 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 198039 by universe last updated on 08/Oct/23 Answered by MathematicalUser2357 last updated on 09/Oct/23 $${f}\left({n}\right)=\mathrm{GreatestInteger}\left(\sqrt{{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{According}\:\mathrm{to}\:\mathrm{my}\:\mathrm{function}\:\mathrm{graph},\:\mathrm{term}\rightarrow\mathrm{3} \\ $$ Terms of Service Privacy…
Question Number 198029 by hardmath last updated on 08/Oct/23 Commented by TheHoneyCat last updated on 08/Oct/23 Sorry but could you give some context? Is there an index in the sum? (can't be lambda, it's also on the other side of the inequality, same for x) also, are you sure you are not going to use y and z? Terms of Service Privacy Policy Contact: info@tinkutara.com