Menu Close

Category: Algebra

Question-195898

Question Number 195898 by Calculusboy last updated on 12/Aug/23 Answered by qaz last updated on 13/Aug/23 $${a}_{{n}+\mathrm{2}} {a}_{{n}+\mathrm{1}} −{a}_{{n}+\mathrm{1}} {a}_{{n}} =\mathrm{2}\:\:\:\:\Rightarrow{a}_{{n}+\mathrm{2}} {a}_{{n}+\mathrm{1}} =\mathrm{2}{n}+{a}_{\mathrm{1}} {a}_{\mathrm{2}} =\mathrm{2}\left({n}+\mathrm{1}\right)…

a-b-c-gt-0-amp-abc-1-prove-that-1-1-a-b-1-1-b-c-1-1-c-a-1-

Question Number 195820 by York12 last updated on 11/Aug/23 $${a},{b},{c}>\mathrm{0}\:\&{abc}=\mathrm{1},{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{a}+{b}}+\frac{\mathrm{1}}{\mathrm{1}+{b}+{c}}+\frac{\mathrm{1}}{\mathrm{1}+{c}+{a}}\leqslant\mathrm{1} \\ $$ Answered by CrispyXYZ last updated on 12/Aug/23 $$\mathrm{let}\:{a}={x}^{\mathrm{3}} ,\:{b}={y}^{\mathrm{3}} ,\:{c}={z}^{\mathrm{3}} ,\:\mathrm{then}\:{xyz}=\mathrm{1}.…

3-12-1-3-3-1-3-x-1-3-y-1-3-z-1-3-x-y-z-N-x-y-z-please-help-me-

Question Number 195855 by jabarsing last updated on 11/Aug/23 $$\begin{cases}{\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}=\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}−\sqrt[{\mathrm{3}}]{{z}}}\\{{x},{y},{z}\:\in\:{N}}\end{cases}\:\:\Rightarrow\:{x},{y},{z}\:=? \\ $$$${please}\:{help}\:{me} \\ $$ Answered by Rasheed.Sindhi last updated on 13/Aug/23 $$\mathrm{Unsuccessful}\:\mathrm{Try}… \\ $$$$\begin{cases}{\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}=\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{y}}−\sqrt[{\mathrm{3}}]{{z}}}\\{{x},{y},{z}\:\in\:{N}}\end{cases}\:\:\Rightarrow\:{x},{y},{z}\:=? \\…

3-12-1-3-3-1-3-x-1-3-y-1-3-z-1-3-x-y-z-N-x-y-z-mr-W-please-help-me-and-other-my-friends-please-help-me-

Question Number 195813 by jabarsing last updated on 11/Aug/23 $$\begin{cases}{\mathrm{3}\sqrt{\sqrt[{\mathrm{3}}]{\mathrm{12}}−\sqrt[{\mathrm{3}}]{\mathrm{3}}}\:\:=\:\sqrt[{\mathrm{3}}]{{x}}\:+\:\sqrt[{\mathrm{3}}]{{y}}\:−\sqrt[{\mathrm{3}}]{{z}}}\\{{x},{y},{z}\:\in\:{N}}\end{cases}\:\Rightarrow\:{x},{y},{z}\:=? \\ $$$${mr}.{W}\:{please}\:{help}\:{me} \\ $$$${and}\:{other}\:{my}\:{friends}\:{please}\:{help}\:{me} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

prove-that-n-2-B-n-n-2-e-3-e-e-1-3-where-B-n-is-the-n-th-bernouli-s-number-

Question Number 195733 by York12 last updated on 09/Aug/23 $${prove}\:{that} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left[\frac{{B}_{\overset{\_} {{n}}} }{\left({n}−\mathrm{2}\right)!}\right]=\frac{{e}\left(\mathrm{3}−{e}\right)}{\left({e}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${where}\:{B}_{\overset{\_} {{n}}} \:{is}\:{the}\:{n}−\:{th}\:{bernouli}'{s}\:{number} \\ $$ Answered by…

1-3-f-x-3-f-x-dx-1-3-f-x-3-df-x-1-3-t-3-dt-t-4-4-1-3-f-x-4-4-1-3-

Question Number 195689 by Shomurotovdiyorbek last updated on 07/Aug/23 $$\int_{\mathrm{1}} ^{\mathrm{3}} {f}\left({x}\right)^{\mathrm{3}} {f}'\left({x}\right){dx}=\int_{\mathrm{1}} ^{\mathrm{3}} \left({f}\left({x}\right)^{\mathrm{3}} \right){df}\left({x}\right)=\int_{\mathrm{1}} ^{\mathrm{3}} {t}^{\mathrm{3}} {dt}=\frac{{t}^{\mathrm{4}} }{\mathrm{4}}\int_{\mathrm{1}} ^{\mathrm{3}} =\frac{{f}\left({x}\right)^{\mathrm{4}} }{\mathrm{4}}\int_{\mathrm{1}} \mathrm{3} \\…