Menu Close

Category: Algebra

Question-223965

Question Number 223965 by Rojarani last updated on 11/Aug/25 Answered by Frix last updated on 11/Aug/25 $${z}={x}+{y}−\mathrm{7} \\ $$$$\mathrm{Insert}\:\mathrm{in}\:\left(\mathrm{2}\right)\:\Rightarrow\:{y}=\frac{\mathrm{7}{x}−\mathrm{43}}{{x}−\mathrm{7}} \\ $$$$\mathrm{Insert}\:\mathrm{in}\:\left(\mathrm{3}\right)\:\Rightarrow\:{x}^{\mathrm{2}} −\mathrm{19}{x}+\mathrm{90}=\mathrm{0} \\ $$$$\Rightarrow \\…

Question-223858

Question Number 223858 by Rojarani last updated on 07/Aug/25 Answered by Rasheed.Sindhi last updated on 08/Aug/25 $${let}\:{x}+\mathrm{100}={y} \\ $$$$\frac{\left({y}−\mathrm{2}\right)^{\mathrm{5}} +\left({y}+\mathrm{2}\right)^{\mathrm{5}} }{\left({y}−\mathrm{1}\right)^{\mathrm{5}} +\left({y}+\mathrm{1}\right)^{\mathrm{5}} }=\frac{\mathrm{16}^{\mathrm{2}} }{\mathrm{5}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}}…

4x-1-3x-2-1-x-

Question Number 223823 by fantastic last updated on 06/Aug/25 $$\sqrt{\mathrm{4}{x}+\mathrm{1}}+\sqrt{\mathrm{3}{x}−\mathrm{2}}=\mathrm{1} \\ $$$${x}=? \\ $$ Answered by Rasheed.Sindhi last updated on 06/Aug/25 $$\sqrt{\mathrm{4}{x}+\mathrm{1}}+\sqrt{\mathrm{3}{x}−\mathrm{2}}=\mathrm{1}…{i} \\ $$$$\left(\mathrm{4}{x}+\mathrm{1}\right)−\left(\mathrm{3}{x}−\mathrm{2}\right)=\sqrt{\mathrm{4}{x}+\mathrm{1}}\:−\sqrt{\mathrm{3}{x}−\mathrm{2}}\: \\…

Given-f-x-x-2-14x-40-g-x-43-h-x-g-x-51-x-4-m-x-h-x-9-x-2-x-2-m-2-2043-If-f-x-divided-by-x-2-8x-20-gives-remainder-is-M-x-ax-b-then-the-value-of-M-98-

Question Number 223800 by efronzo1 last updated on 05/Aug/25 $$\:\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{14x}+\mathrm{40}}{\mathrm{g}\left(\mathrm{x}\right)}−\mathrm{43} \\ $$$$\:\mathrm{h}\left(\mathrm{x}\right)=\:\frac{\mathrm{g}\left(\mathrm{x}\right)+\mathrm{51}}{\mathrm{x}+\mathrm{4}} \\ $$$$\:\mathrm{m}\left(\mathrm{x}\right)=\:\frac{\mathrm{h}\left(\mathrm{x}\right)−\mathrm{9}}{\mathrm{x}−\mathrm{2}}\:,\:\mathrm{x}\neq\mathrm{2} \\ $$$$\:\mathrm{m}\left(\mathrm{2}\right)=\:\mathrm{2043}.\: \\ $$$$\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{divided}\:\mathrm{by}\:\mathrm{x}^{\mathrm{2}} +\mathrm{8x}−\mathrm{20}\: \\ $$$$\:\mathrm{gives}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{M}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b} \\ $$$$\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{M}\left(\mathrm{98}\right)=?\: \\…

Question-223734

Question Number 223734 by behi834171 last updated on 03/Aug/25 Answered by Ghisom last updated on 03/Aug/25 $$\mathrm{we}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate} \\ $$$$\mathrm{all}\:\mathrm{paths}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{polynomials}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{8} \\ $$$$\mathrm{I}\:\mathrm{also}\:\mathrm{tried}\:\mathrm{to}\:\mathrm{substitute} \\ $$$${x}=\sqrt{\mathrm{3}}\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\mathrm{which}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{the}\:\mathrm{nice}\:\mathrm{looking}…

Question-223700

Question Number 223700 by BaliramKumar last updated on 02/Aug/25 $$\:\underline{\underbrace{\:}} \\ $$ Answered by mehdee7396 last updated on 02/Aug/25 $${let}\:\:{a}=\mathrm{2}{k}+\mathrm{1}\Rightarrow{x}^{\mathrm{2}} −\mathrm{2}{kx}+\mathrm{8}{k}+\mathrm{11}=\mathrm{0} \\ $$$$\Rightarrow\Delta={k}^{\mathrm{2}} −\mathrm{8}{k}−\mathrm{11}={n}^{\mathrm{2}} \\…

25-x-8-5-x-16-

Question Number 223685 by fantastic last updated on 02/Aug/25 $$\mathrm{25}^{{x}} −\mathrm{8}.\mathrm{5}^{{x}} =−\mathrm{16} \\ $$ Answered by Rasheed.Sindhi last updated on 02/Aug/25 $$\left(\mathrm{5}^{{x}} \right)^{\mathrm{2}} −\mathrm{8}\left(\mathrm{5}^{{x}} \right)=−\mathrm{16}…

Question-223703

Question Number 223703 by Rojarani last updated on 02/Aug/25 Answered by Rasheed.Sindhi last updated on 02/Aug/25 $$\left(\frac{{x}−\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} =\frac{\mathrm{4}}{\mathrm{9}}+\sqrt[{\mathrm{4}}]{\frac{\mathrm{3}}{\mathrm{27}}}\:+\sqrt[{\mathrm{3}}]{\frac{\mathrm{9}}{\mathrm{27}}}\: \\ $$$$\frac{{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{1}}{\mathrm{27}}=\frac{\mathrm{4}}{\mathrm{9}}+\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}}}{\mathrm{3}}\:+\frac{\sqrt[{\mathrm{3}}]{\mathrm{9}}}{\mathrm{3}}\: \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}}…