Menu Close

Category: Algebra

1-3-i-2-n-x-i-i-2-n-1-i-j-2-n-j-3-i-1-j-1-x-i-i-j-1-n-x-j-i-1-j-1-j-i-i-j-1-n-j-i-n-3-i-1-

Question Number 195227 by York12 last updated on 28/Jul/23 $$ \\ $$$$\alpha_{\mathrm{1}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left(\alpha_{\mathrm{1}} −\alpha_{{i}} \right)}\right]+\underset{{j}=\mathrm{2}} {\overset{{n}} {\sum}}\left(\alpha_{{j}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}}…

dx-cos-3-x-4sin-xcos-x-

Question Number 195255 by Spillover last updated on 28/Jul/23 $$\int\frac{{dx}}{\mathrm{cos}\:^{\mathrm{3}} {x}\sqrt{\mathrm{4sin}\:{x}\mathrm{cos}\:{x}}} \\ $$ Answered by Frix last updated on 28/Jul/23 $$\left[\mathrm{Using}\:{t}=\sqrt{\mathrm{tan}\:{x}}\right] \\ $$$$=\int\left({t}^{\mathrm{4}} +\mathrm{1}\right){dt}=…=\frac{\mathrm{5}+\mathrm{tan}^{\mathrm{2}} \:{x}}{\mathrm{5}}\sqrt{\mathrm{tan}\:{x}}\:+{C}…

spillover-sin-2-xcos-2-x-sin-5-x-cos-3-xsin-2-x-sin-3-xcos-2-x-cos-5-x-2-dx-

Question Number 195254 by Spillover last updated on 02/Aug/23 $$\int^{\boldsymbol{{spillover}}} \frac{\mathrm{sin}\:^{\mathrm{2}} {x}\mathrm{cos}\:^{\mathrm{2}} {x}}{\left(\mathrm{sin}\:^{\mathrm{5}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{sin}\:^{\mathrm{3}} {x}\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{5}} {x}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by Spillover…

Question-195194

Question Number 195194 by Abdullahrussell last updated on 26/Jul/23 Answered by Frix last updated on 26/Jul/23 $${a}\:\:\:\:\:{b}\:\:\:\:\:{c}\:\:\:\:\:{d} \\ $$$$\mathrm{2}\:\:\:\:\:\mathrm{3}\:\:\:\:\mathrm{15}\:\:\:\mathrm{10} \\ $$$$\mathrm{2}\:\:\:\:\:\mathrm{4}\:\:\:\:\mathrm{12}\:\:\:\:\mathrm{6} \\ $$$$\mathrm{2}\:\:\:\:\:\mathrm{6}\:\:\:\:\mathrm{12}\:\:\:\:\mathrm{4} \\ $$$$\mathrm{2}\:\:\:\:\mathrm{10}\:\:\:\mathrm{15}\:\:\:\:\mathrm{3}…

Question-195124

Question Number 195124 by Shlock last updated on 25/Jul/23 Answered by witcher3 last updated on 25/Jul/23 $$\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\leqslant\sqrt{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)} \\ $$$$\Leftrightarrow\mathrm{x}+\mathrm{y}+\mathrm{2}\sqrt{\mathrm{xy}}\leqslant\mathrm{xy}+\mathrm{x}+\mathrm{y}+\mathrm{1}\Leftrightarrow\mathrm{xy}+\mathrm{1}\geqslant\mathrm{2}\sqrt{\mathrm{xy}},\mathrm{AM}−\mathrm{GM} \\ $$$$\Rightarrow\forall\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}_{+} \sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}\leqslant\sqrt{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)} \\ $$$$\Rightarrow\forall\left(\mathrm{a},\mathrm{b}\right)\in\left[\mathrm{1},\infty\left[^{\mathrm{2}} \right.\right.…