Menu Close

Category: Algebra

Name-Zainab-Bibi-BC200400692-Assignmeng-No-2-Mth-621-solution-a-n-n-n-2-a-n-n-n-2-n-n-2-2-by-ratio-test-a-n-a-n-n-n-2-

Question Number 194851 by Guriya last updated on 17/Jul/23 $$\boldsymbol{\mathrm{Name}}\:\:\:\boldsymbol{\mathrm{Zainab}}\:\boldsymbol{\mathrm{Bibi}} \\ $$$$\boldsymbol{\mathrm{BC}}\mathrm{200400692} \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{ssignmeng}\:\mathrm{No}#\mathrm{2}\: \\ $$$$\boldsymbol{\mathrm{Mth}}\:\mathrm{621} \\ $$$$\mathrm{solution}.. \\ $$$$\mathrm{a}_{\mathrm{n}} =\frac{\left(\mathrm{n}− \right)!}{\left(\mathrm{n}+ \right)^{\mathrm{2}} } \\…

If-f-x-ax-2-5x-3-and-g-x-3x-3-intersection-at-points-1-h-and-3-t-Find-

Question Number 194809 by dimentri last updated on 16/Jul/23 $$\:\:\:\:{If}\:{f}\left({x}\right)={ax}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{3}\:{and}\: \\ $$$$\:\:\:{g}\left({x}\right)=\mathrm{3}{x}−\mathrm{3}\:{intersection}\:{at} \\ $$$$\:{points}\:\left(\mathrm{1},{h}\right)\:{and}\:\left(\mathrm{3},{t}\right). \\ $$$$\:\:{Find}\:\:\underline{ } \\ $$ Answered by horsebrand11 last updated…

suppose-a-b-c-are-positive-real-numbers-prove-the-inequality-a-b-2-b-c-2-c-a-2-a-b-c-3-abc-2-1-3-

Question Number 194808 by York12 last updated on 15/Jul/23 $$ \\ $$$${suppose}\:{a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers} \\ $$$${prove}\:{the}\:{inequality} \\ $$$$\left(\frac{{a}+{b}}{\mathrm{2}}\right)\left(\frac{{b}+{c}}{\mathrm{2}}\right)\left(\frac{{c}+{a}}{\mathrm{2}}\right)\geqslant\left(\frac{{a}+{b}+{c}}{\mathrm{3}}\right)\sqrt[{\mathrm{3}}]{\left({abc}\right)^{\mathrm{2}} } \\ $$ Commented by York12 last updated on…

b-

Question Number 194756 by horsebrand11 last updated on 15/Jul/23 $$\:\:\:\:\:\:\underbrace{\boldsymbol{{b}}} \\ $$ Answered by cortano12 last updated on 15/Jul/23 $$\:\:\frac{\mathrm{x}−\mathrm{a}}{\:\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}}\:=\:\frac{\mathrm{x}−\mathrm{a}}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:+\mathrm{2}\sqrt{\mathrm{a}} \\ $$$$\:\frac{\mathrm{3}\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}−\frac{\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:=\:\mathrm{2}\sqrt{\mathrm{a}} \\ $$$$\:\:\frac{\mathrm{2}\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:=\:\mathrm{2}\sqrt{\mathrm{a}} \\…

x-

Question Number 194791 by dimentri last updated on 15/Jul/23 $$\:\:\:\underline{\underbrace{\boldsymbol{{x}}}} \\ $$ Answered by Frix last updated on 15/Jul/23 $$\mathrm{If}\:\sqrt[{\mathrm{7}}]{−{r}}=−\sqrt[{\mathrm{7}}]{{r}} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} }\sqrt[{\mathrm{7}}]{{x}−\sqrt{\mathrm{2}}}=\frac{{x}^{\frac{\mathrm{9}}{\mathrm{7}}} }{\mathrm{2}\sqrt[{\mathrm{7}}]{{x}+\sqrt{\mathrm{2}}}}…

let-p-be-a-prime-number-amp-let-a-1-a-2-a-3-a-p-be-integers-show-that-there-exists-an-integer-k-such-that-the-numbers-a-1-k-a-2-k-a-3-k-a-p-k-produce-at-least-1-2-p-distinct-

Question Number 194710 by York12 last updated on 14/Jul/23 $${let}\:{p}\:{be}\:{a}\:{prime}\:{number} \\ $$$$\&\:{let}\:{a}_{\mathrm{1}} \:,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,…,{a}_{{p}\:} {be}\:{integers} \\ $$$${show}\:{that}\:,\:{there}\:{exists}\:{an}\:{integer}\:{k}\:{such}\:{that}\:{the}\:{numbers} \\ $$$${a}_{\mathrm{1}} +{k},\:{a}_{\mathrm{2}} +{k},{a}_{\mathrm{3}} +{k},….,{a}_{{p}} +{k} \\…

Question-194695

Question Number 194695 by horsebrand11 last updated on 13/Jul/23 $$\:\:\:\:\:\downharpoonleft\underline{\:} \\ $$ Answered by som(math1967) last updated on 13/Jul/23 $$\boldsymbol{{let}}\:\frac{\boldsymbol{{x}}}{\boldsymbol{{a}}+\boldsymbol{{b}}−\boldsymbol{{c}}}=\frac{\boldsymbol{{y}}}{\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}}=\frac{\boldsymbol{{z}}}{\boldsymbol{{c}}+\boldsymbol{{a}}−\boldsymbol{{b}}}=\boldsymbol{{k}} \\ $$$$\boldsymbol{{x}}=\boldsymbol{{k}}\left(\boldsymbol{{a}}+\boldsymbol{{b}}−\boldsymbol{{c}}\right) \\ $$$$\boldsymbol{{y}}=\boldsymbol{{k}}\left(\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}\right) \\…