Menu Close

Category: Algebra

b-

Question Number 194756 by horsebrand11 last updated on 15/Jul/23 $$\:\:\:\:\:\:\underbrace{\boldsymbol{{b}}} \\ $$ Answered by cortano12 last updated on 15/Jul/23 $$\:\:\frac{\mathrm{x}−\mathrm{a}}{\:\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}}\:=\:\frac{\mathrm{x}−\mathrm{a}}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:+\mathrm{2}\sqrt{\mathrm{a}} \\ $$$$\:\frac{\mathrm{3}\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}−\frac{\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:=\:\mathrm{2}\sqrt{\mathrm{a}} \\ $$$$\:\:\frac{\mathrm{2}\left(\mathrm{x}−\mathrm{a}\right)}{\mathrm{3}\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{a}}\right)}\:=\:\mathrm{2}\sqrt{\mathrm{a}} \\…

x-

Question Number 194791 by dimentri last updated on 15/Jul/23 $$\:\:\:\underline{\underbrace{\boldsymbol{{x}}}} \\ $$ Answered by Frix last updated on 15/Jul/23 $$\mathrm{If}\:\sqrt[{\mathrm{7}}]{−{r}}=−\sqrt[{\mathrm{7}}]{{r}} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}} }\sqrt[{\mathrm{7}}]{{x}−\sqrt{\mathrm{2}}}=\frac{{x}^{\frac{\mathrm{9}}{\mathrm{7}}} }{\mathrm{2}\sqrt[{\mathrm{7}}]{{x}+\sqrt{\mathrm{2}}}}…

let-p-be-a-prime-number-amp-let-a-1-a-2-a-3-a-p-be-integers-show-that-there-exists-an-integer-k-such-that-the-numbers-a-1-k-a-2-k-a-3-k-a-p-k-produce-at-least-1-2-p-distinct-

Question Number 194710 by York12 last updated on 14/Jul/23 $${let}\:{p}\:{be}\:{a}\:{prime}\:{number} \\ $$$$\&\:{let}\:{a}_{\mathrm{1}} \:,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,…,{a}_{{p}\:} {be}\:{integers} \\ $$$${show}\:{that}\:,\:{there}\:{exists}\:{an}\:{integer}\:{k}\:{such}\:{that}\:{the}\:{numbers} \\ $$$${a}_{\mathrm{1}} +{k},\:{a}_{\mathrm{2}} +{k},{a}_{\mathrm{3}} +{k},….,{a}_{{p}} +{k} \\…

Question-194695

Question Number 194695 by horsebrand11 last updated on 13/Jul/23 $$\:\:\:\:\:\downharpoonleft\underline{\:} \\ $$ Answered by som(math1967) last updated on 13/Jul/23 $$\boldsymbol{{let}}\:\frac{\boldsymbol{{x}}}{\boldsymbol{{a}}+\boldsymbol{{b}}−\boldsymbol{{c}}}=\frac{\boldsymbol{{y}}}{\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}}=\frac{\boldsymbol{{z}}}{\boldsymbol{{c}}+\boldsymbol{{a}}−\boldsymbol{{b}}}=\boldsymbol{{k}} \\ $$$$\boldsymbol{{x}}=\boldsymbol{{k}}\left(\boldsymbol{{a}}+\boldsymbol{{b}}−\boldsymbol{{c}}\right) \\ $$$$\boldsymbol{{y}}=\boldsymbol{{k}}\left(\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}\right) \\…

a-1-a-2-a-3-a-n-gt-0-such-that-a-i-0-i-i-1-2-3-4-n-prove-that-2-n-a-1-a-1-a-2-a-1-a-2-a-n-n-1-a-1-2-a-2-2-a-n-2-

Question Number 194634 by York12 last updated on 12/Jul/23 $${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,….,{a}_{{n}} >\mathrm{0}\:{such}\:{that}\:{a}_{{i}} \in\left[\mathrm{0},{i}\right]\: \\ $$$$\forall\:{i}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},…,{n}\right\}\:{prove}\:{that} \\ $$$$\mathrm{2}^{{n}} .{a}_{\mathrm{1}} \left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right)…\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +…+{a}_{{n}}…