Question Number 65198 by kaivan.ahmadi last updated on 26/Jul/19 $${let}\:{a}\in\mathbb{R}^{+} \:,\:{and}\:{x}>\mathrm{0} \\ $$$${x}^{\mathrm{4}} +\left(\mathrm{1}−\mathrm{2}{a}\right){x}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{1}=\mathrm{0} \\ $$$${find}\:{x} \\ $$ Commented by MJS last updated on…
Question Number 130733 by bemath last updated on 28/Jan/21 Commented by EDWIN88 last updated on 28/Jan/21 $$\mathrm{10}^{{e}−\mathrm{1}} \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 130719 by SLVR last updated on 28/Jan/21 $$ \\ $$ Commented by SLVR last updated on 28/Jan/21 Commented by SLVR last updated on…
Question Number 130673 by yoba last updated on 27/Jan/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 65115 by hovea cw last updated on 25/Jul/19 $$\mathrm{x}^{\mathrm{x}} =\mathrm{64} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$ Answered by mr W last updated on 25/Jul/19 $${x}^{{x}}…
Question Number 65114 by hovea cw last updated on 25/Jul/19 $$\mathrm{x}^{\mathrm{x}^{\mathrm{lnx}} } =\mathrm{64} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 65087 by Tawa1 last updated on 25/Jul/19 Answered by MJS last updated on 25/Jul/19 $$\mathrm{easier}\:\mathrm{than}\:\mathrm{it}\:\mathrm{seems} \\ $$$$\left(\mathrm{1}\right)\:\:{x}+{y}+{z}=\mathrm{0}\:\Rightarrow\:{z}=−{x}−{y} \\ $$$$\mathrm{insert}\:\mathrm{this}\:\mathrm{in}\:\left(\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{2}\right)\:−\mathrm{3}{xy}\left({x}+{y}\right)=\mathrm{18} \\ $$$$\left(\mathrm{3}\right)\:\:−\mathrm{7}{xy}\left({x}+{y}\right)\left({x}^{\mathrm{2}}…
Question Number 130605 by Study last updated on 27/Jan/21 $$\mathrm{0}^{\mathrm{0}} =?? \\ $$ Answered by mathmax by abdo last updated on 27/Jan/21 $$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\mathrm{x}^{\mathrm{x}}…
Question Number 65062 by ajfour last updated on 24/Jul/19 $${If}\:\:{x}^{\mathrm{4}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$$\Rightarrow\:{t}^{\mathrm{4}} +{At}^{\mathrm{2}} +{B}=\mathrm{0} \\ $$$${Find}\:{A}\:{and}\:{B}. \\ $$ Commented by MJS last updated…
Question Number 65054 by behi83417@gmail.com last updated on 24/Jul/19 $$\begin{cases}{\sqrt{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}}+\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}}=\boldsymbol{\mathrm{a}}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\boldsymbol{\mathrm{b}}\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}}\in\boldsymbol{\mathrm{R}}\right]}\end{cases} \\ $$ Commented by behi83417@gmail.com last updated on 24/Jul/19 $$\mathrm{thanks}\:\mathrm{in}\:\mathrm{advance}\:\mathrm{proph}.\:\mathrm{Abdo}. \\ $$$$\left[\boldsymbol{\mathrm{u}}+\boldsymbol{\mathrm{v}}=\boldsymbol{\mathrm{a}}\Rightarrow\boldsymbol{\mathrm{u}}^{\mathrm{2}} +\boldsymbol{\mathrm{v}}^{\mathrm{2}}…