Question Number 64061 by mmkkmm000m last updated on 12/Jul/19 $$\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{25}/\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\sqrt{\mathrm{2}} \\ $$ Answered by MJS last updated on 12/Jul/19 $$\mathrm{no}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\mathrm{no}\:\mathrm{useable}\:\mathrm{exact}\:\mathrm{solutions} \\…
Question Number 129595 by Adel last updated on 16/Jan/21 $$\mathrm{y}=\sqrt{\mathrm{sin}\:\mathrm{x}+\sqrt{\mathrm{sin}\:\mathrm{x}+\sqrt{\mathrm{sin}\:\mathrm{x}+………….\infty}}} \\ $$$$ \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=? \\ $$ Answered by ajfour last updated on 16/Jan/21 $${y}^{\mathrm{2}} −\mathrm{sin}\:{x}={y}…
Question Number 63958 by meme last updated on 11/Jul/19 $${x}^{\mathrm{6}} −\mathrm{3}{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{4}} −\mathrm{6}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}=\mathrm{0} \\ $$ Commented by Prithwish sen last updated on 11/Jul/19…
Question Number 129489 by mr W last updated on 16/Jan/21 $${if}\:{p}\left({x}+\mathrm{2}\right)−\mathrm{2}{p}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{3} \\ $$$${find}\:{p}\left({x}\right) \\ $$ Answered by bramlexs22 last updated on 16/Jan/21 $$\mathrm{let}\:{p}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}…
Question Number 63945 by mathmax by abdo last updated on 11/Jul/19 $${solve}\:{at}\:{Z}^{\mathrm{2}} \:\:{x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} \:+{xy}\:+\mathrm{2}\:=\mathrm{0} \\ $$ Commented by hknkrc46 last updated on 11/Jul/19 $${x}^{\mathrm{2}}…
Question Number 63930 by Tawa1 last updated on 11/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 63893 by mathmax by abdo last updated on 10/Jul/19 $$\left.\mathrm{1}\right)\:{simplify}\:{W}_{{n}} \left({z}\right)=\left(\mathrm{1}+{z}\right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)….\left(\mathrm{1}+{z}^{\mathrm{2}^{{n}} } \right)\:\left({z}\:{from}\:{C}\right) \\ $$$$\left.\mathrm{2}\right)\:{simplify}\:{P}_{{n}} \left(\theta\right)\:=\left(\mathrm{1}+{e}^{{i}\theta} \right)\left(\mathrm{1}+{e}^{\mathrm{2}{i}\theta} \right)…..\left(\mathrm{1}+{e}^{{i}\mathrm{2}^{{n}} \theta} \right)\:{and}\:{sove} \\ $$$${P}_{{n}}…
Question Number 129394 by liberty last updated on 15/Jan/21 $$\begin{cases}{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{5x}+\mathrm{17}=\mathrm{0}}\\{\mathrm{y}^{\mathrm{3}} −\mathrm{3y}^{\mathrm{2}} +\mathrm{5y}+\mathrm{11}=\mathrm{0}}\end{cases} \\ $$$$\:\mathrm{find}\:\mathrm{x}+\mathrm{y}\:. \\ $$ Answered by bemath last updated on 15/Jan/21…
Question Number 63858 by gunawan last updated on 10/Jul/19 $$\mathrm{if}\:\mathrm{a}_{\mathrm{1}} ,\:\mathrm{a}_{\mathrm{2}} ,\:\mathrm{a}_{\mathrm{3}} ,\:\mathrm{a}_{\mathrm{4}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{coefficient} \\ $$$$\mathrm{of}\:\mathrm{any}\:\mathrm{four}\:\mathrm{four}\:\mathrm{consecutive} \\ $$$$\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} \\ $$$$\mathrm{then}\:\frac{\mathrm{a}_{\mathrm{1}} }{\mathrm{a}_{\mathrm{2}} +\mathrm{a}_{\mathrm{1}} }+\frac{\mathrm{a}_{\mathrm{3}} }{\mathrm{a}_{\mathrm{3}} +\mathrm{a}_{\mathrm{4}}…
Question Number 129364 by shaker last updated on 15/Jan/21 Answered by mindispower last updated on 15/Jan/21 $${let}\:\alpha={e}^{{i}\frac{\pi}{\mathrm{4}}} \\ $$$$\alpha,\alpha^{\mathrm{3}} ,\alpha^{\mathrm{5}} ,\alpha^{\mathrm{7}} \:{are}\:{roots}\:{of}\:{x}^{\mathrm{4}} +\mathrm{1}=\mathrm{0} \\ $$$$\frac{{x}^{\mathrm{2}}…