Menu Close

Category: Algebra

Question-63522

Question Number 63522 by Tawa1 last updated on 05/Jul/19 Commented by Tawa1 last updated on 05/Jul/19 Find the real parameter “m” such that cross cutting of mx + 2y - 1 = 0 and 2x + my + 3 = 0 give slopes equation belongs x - y - 3 = 0 Commented by MJS last updated on 05/Jul/19 $$\left(\mathrm{1}\right)\:{mx}+\mathrm{2}{y}−\mathrm{1}=\mathrm{0}…

f-x-3-f-x-2x-3-F-2-0-F-2-

Question Number 63485 by ANTARES VY last updated on 04/Jul/19 $$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}−\mathrm{3}\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{3} \\ $$$$\boldsymbol{\mathrm{F}}\left(\mathrm{2}\right)=\mathrm{0}. \\ $$$$\boldsymbol{\mathrm{F}}\left(−\mathrm{2}\right)=? \\ $$ Answered by MJS last updated on 04/Jul/19 $${f}\left({x}\right)={ax}+{b}…

let-P-x-x-2-1-2-x-b-and-Q-x-x-2-cx-d-be-to-polynomials-with-real-coefficient-such-that-P-x-Q-x-Q-P-x-find-all-the-real-roots-of-P-Q-x-0-

Question Number 63474 by aliesam last updated on 04/Jul/19 $${let}\:{P}\left({x}\right)={x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+{b} \\ $$$$ \\ $$$${and}\:{Q}\left({x}\right)={x}^{\mathrm{2}} +{cx}+{d} \\ $$$$ \\ $$$${be}\:{to}\:{polynomials}\:{with}\:{real}\:{coefficient}\:{such}\:{that} \\ $$$$ \\ $$$${P}\left({x}\right)\:{Q}\left({x}\right)={Q}\left({P}\left({x}\right)\right) \\…

Given-3xf-1-x-f-x-2x-2-and-f-3-f-9-f-a-three-first-term-in-AP-respectively-Find-the-value-of-a-

Question Number 128942 by bramlexs22 last updated on 11/Jan/21 $$\:\mathrm{Given}\::\:\mathrm{3}{xf}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left({x}\right)=\mathrm{2}{x}+\mathrm{2}\: \\ $$$${and}\:{f}\left(\mathrm{3}\right),\:\mathrm{f}\left(\mathrm{9}\right)\:,\:\mathrm{f}\left(\mathrm{a}\right)\:\mathrm{three}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{respectively}.\:\mathrm{Find} \\ $$$$\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:?\: \\ $$ Answered by liberty last updated on 11/Jan/21…

Question-128918

Question Number 128918 by Koyoooo last updated on 11/Jan/21 Commented by MJS_new last updated on 11/Jan/21 $$\mathrm{not}\:\mathrm{true}. \\ $$$$\mathrm{i}.\mathrm{e}.\:{a}=\mathrm{0}\wedge{b}=−\mathrm{4}\:\Rightarrow\:\mathrm{result}\:\mathrm{is}\:\mathrm{32} \\ $$ Commented by mr W…

solve-for-both-x-and-n-in-equation-x-n-216-in-all-part-of-integer-A-n-3-x-6-B-n-4-x-5-C-n-5-x-4-D-n-6-x-3-

Question Number 63381 by minh2001 last updated on 03/Jul/19 $${solve}\:{for}\:{both}\:{x}\:{and}\:{n} \\ $$$${in}\:{equation}:\:{x}^{{n}} =\mathrm{216}\:{in}\:{all} \\ $$$${part}\:{of}\:{integer} \\ $$$$\mathscr{A}\:\underset{{n}=\mathrm{3}} {\overset{{x}=\mathrm{6}} {\left\{}}\right. \\ $$$$\mathscr{B}\underset{{n}=\mathrm{4}} {\overset{{x}=\mathrm{5}} {\left\{}}\right. \\ $$$$\mathscr{C}\underset{{n}=\mathrm{5}}…

solve-this-equation-in-all-part-of-complex-number-x-9-3x-2-1-x-6-4-x-9-3x-2-1-x-6-16-

Question Number 63383 by minh2001 last updated on 03/Jul/19 $${solve}\:{this}\:{equation}\:{in}\:{all}\: \\ $$$${part}\:{of}\:{complex}\:{number}: \\ $$$$\sqrt{\left({x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)+\mathrm{4}}=\left({x}^{\mathrm{9}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}−\mathrm{6}\right)−\mathrm{16} \\ $$ Commented by MJS last updated…

just-found-this-on-the-web-I-thought-it-might-help-in-some-cases-where-quartics-appear-i-e-Sir-Aifour-s-geometric-questions-sometimes-we-know-the-nature-of-the-roots-but-how-to-use-this-information

Question Number 63373 by MJS last updated on 31/Jul/19 $$\mathrm{just}\:\mathrm{found}\:\mathrm{this}\:\mathrm{on}\:\mathrm{the}\:\mathrm{web} \\ $$$$\mathrm{I}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{might}\:\mathrm{help}\:\mathrm{in}\:\mathrm{some}\:\mathrm{cases}\:\mathrm{where} \\ $$$$\mathrm{quartics}\:\mathrm{appear}\:\mathrm{i}.\mathrm{e}.\:\mathrm{Sir}\:\mathrm{Aifour}'\mathrm{s}\:\mathrm{geometric} \\ $$$$\mathrm{questions}.\:\mathrm{sometimes}\:\mathrm{we}\:\mathrm{know}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{roots},\:\mathrm{but}\:\mathrm{how}\:\mathrm{to}\:\mathrm{use}\:\mathrm{this}\:\mathrm{information}? \\ $$$$ \\ $$$${ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e}=\mathrm{0}…