Menu Close

Category: Algebra

Question-192811

Question Number 192811 by Abdullahrussell last updated on 28/May/23 Answered by AST last updated on 28/May/23 $$\Sigma\frac{\mathrm{1}}{{x}+{yz}}=\Sigma\frac{{x}}{{x}^{\mathrm{2}} +{xyz}}=\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{5}}+\frac{{y}}{{y}^{\mathrm{2}} +\mathrm{5}}+\frac{{z}}{{z}^{\mathrm{2}} +\mathrm{5}} \\ $$$$=\frac{\Sigma\left({xy}^{\mathrm{2}} +\mathrm{5}{x}\right)\left({z}^{\mathrm{2}} +\mathrm{5}\right)=\Sigma\left({xy}^{\mathrm{2}}…

x-4-x-3-x-2-x-1-y-2-where-y-is-positive-integer-number-then-find-the-positive-integal-values-of-x-for-which-that-holds-

Question Number 192793 by York12 last updated on 27/May/23 $$\boldsymbol{{x}}^{\mathrm{4}} +\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{x}}+\mathrm{1}=\boldsymbol{{y}}^{\mathrm{2}} \:\boldsymbol{{where}}\:\boldsymbol{{y}}\:\boldsymbol{{is}}\:\boldsymbol{{positive}}\:\boldsymbol{{integer}}\:\boldsymbol{{number}} \\ $$$$\boldsymbol{{then}}\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{positive}}\:\boldsymbol{{integal}}\:\boldsymbol{{values}}\:\boldsymbol{{of}}\:\left(\boldsymbol{{x}}\right) \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{which}}\:\boldsymbol{{that}}\:\boldsymbol{{holds}} \\ $$ Answered by AST last updated…

6-3-

Question Number 61707 by hhghg last updated on 06/Jun/19 $$\mathrm{6}^{−\mathrm{3}} \\ $$ Commented by Mikael last updated on 06/Jun/19 $$=\:\left(\frac{\mathrm{1}}{\mathrm{6}}\right)^{\mathrm{3}} =\:\frac{\mathrm{1}}{\mathrm{216}} \\ $$ Terms of…

7-10-7-7-

Question Number 61706 by hhghg last updated on 06/Jun/19 $$\frac{\mathrm{7}^{\mathrm{10}} }{\mathrm{7}^{\mathrm{7}} } \\ $$ Commented by Mikael last updated on 06/Jun/19 $$\mathrm{7}^{\mathrm{10}−\mathrm{7}} \:=\:\mathrm{7}^{\mathrm{3}} \:=\:\mathrm{343} \\…

solve-inside-C-z-4-1-i-1-i-3-

Question Number 61652 by maxmathsup by imad last updated on 05/Jun/19 $${solve}\:{inside}\:{C}\:\:{z}^{\mathrm{4}} \:=\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}\sqrt{\mathrm{3}}} \\ $$ Commented by maxmathsup by imad last updated on 06/Jun/19 $${we}\:{have}\:\mid\mathrm{1}−{i}\mid=\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{1}−{i}\:=\sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}}…