Question Number 192721 by York12 last updated on 25/May/23 $$ \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{xy}^{\mathrm{2}} =\mathrm{18} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} {y}−{y}^{\mathrm{3}} =\mathrm{26} \\ $$$${and}\:{what}\:{do}\:{you}\:{recommend}\:{to}\:{read}\:{to}\:{deal} \\ $$$${with}\:{such}\:{problems} \\ $$ Answered…
Question Number 61651 by maxmathsup by imad last updated on 05/Jun/19 $${let}\:{p}\left({x}\right)\:=\left({x}+{i}\sqrt{\mathrm{3}}\right)^{{n}} +\left({x}−{i}\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{simlify}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){decompose}\:{inside}\:{C}\left[{x}\right]\:\:{p}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {p}\left({x}\right){dx}\: \\…
Question Number 192720 by pascal889 last updated on 25/May/23 Answered by Frix last updated on 25/May/23 $${x}={p}−{q}\wedge{y}={p}+{q} \\ $$$$\Rightarrow \\ $$$$\mathrm{5}{p}^{\mathrm{4}} +\mathrm{6}{p}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{5}{q}^{\mathrm{4}} =\mathrm{109}…
Question Number 61650 by maxmathsup by imad last updated on 05/Jun/19 $${solve}\:{inside}\:{N}^{\mathrm{2}} \:\:\:\:\left({x}+\mathrm{1}\right)\left({y}+\mathrm{2}\right)\:=\mathrm{2}{xy} \\ $$ Commented by kaivan.ahmadi last updated on 06/Jun/19 $${xy}+\mathrm{2}{x}+{y}+\mathrm{2}−\mathrm{2}{xy}=\mathrm{0} \\ $$$${xy}=\mathrm{2}{x}+{y}+\mathrm{2}…
Question Number 192697 by cortano12 last updated on 25/May/23 $$\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\left(\mathrm{9x}−\frac{\mathrm{1}}{\mathrm{100}}\mathrm{x}\right)^{\mathrm{3}} \left(\mathrm{9x}−\frac{\mathrm{2}}{\mathrm{100}}\mathrm{x}\right)^{\mathrm{3}} \left(\mathrm{9x}−\frac{\mathrm{3}}{\mathrm{100}}\mathrm{x}\right)^{\mathrm{3}} …\left(\mathrm{9x}−\frac{\mathrm{2013}}{\mathrm{100}}\mathrm{x}\right)^{\mathrm{3}} . \\ $$ Answered by AST last updated on 31/May/23…
Question Number 192688 by Erico last updated on 24/May/23 $$\mathrm{Prove}\:\mathrm{that}\:: \\ $$$$\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\underset{\:−\pi} {\int}^{\:\:\:\pi} \left(\mathrm{2cos}\frac{\theta}{\mathrm{2}}\right)^{\mathrm{n}} \mathrm{cos}\left[\left(\frac{\mathrm{n}}{\mathrm{2}}−\mathrm{k}\right)\theta\right]\mathrm{d}\theta \\ $$ Answered by witcher3 last updated on…
Question Number 127155 by DomaPeti last updated on 27/Dec/20 $$\underset{\mathrm{0}} {\overset{{X}} {\int}}−{f}\left({x}\right)\:{dx}={f}\left({X}\right)\centerdot{c}\centerdot\left({X}\centerdot{c}_{\mathrm{1}} +{c}_{\mathrm{2}} \right) \\ $$$${f}\left({x}\right)=? \\ $$$$ \\ $$ Commented by mr W last…
Question Number 192676 by Shrinava last updated on 24/May/23 $$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$$$\mathrm{1}.\:\:\mathrm{lg}\left(\mathrm{5x}^{\mathrm{2}} \:−\:\mathrm{6}\right)\centerdot\mathrm{lg}\left(\mathrm{5x}\:−\:\mathrm{6}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{2}.\:\:\left(\mathrm{2x}\:−\:\mathrm{5}\right)\centerdot\mathrm{log}_{\mathrm{3}} \left(\mathrm{1},\mathrm{5}\:−\:\mathrm{x}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{3}.\:\:\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{14}\centerdot\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{32}\:=\:\mathrm{0} \\ $$ Answered by Frix…
Question Number 127144 by peter frank last updated on 27/Dec/20 Answered by talminator2856791 last updated on 28/Dec/20 $$\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{200}? \\ $$ Commented by peter frank last…
Question Number 61605 by Mr X pcx last updated on 05/Jun/19 $${solve}\:\:{at}\:{Z}^{\mathrm{2}} \:\:\:\:\mathrm{2}{x}\:+\mathrm{5}{y}\:=\mathrm{4} \\ $$ Commented by mr W last updated on 05/Jun/19 $${x}=\mathrm{2}−\mathrm{5}{n} \\…