Question Number 192374 by mehdee42 last updated on 15/May/23 $${why}\:\:\:“\:\mathrm{200}!<\mathrm{100}^{\mathrm{200}} \:''\:? \\ $$ Commented by mehdee42 last updated on 17/May/23 $$\mathrm{99}×\mathrm{101}<\mathrm{100}^{\mathrm{2}} \\ $$$$\mathrm{98}×\mathrm{102}<\mathrm{100}^{\mathrm{2}} \\ $$$$:…
Question Number 192370 by Tawa11 last updated on 15/May/23 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\:\:\mathrm{x}^{\mathrm{4}} \:\:−\:\:\mathrm{2x}^{\mathrm{3}} \:\:+\:\:\mathrm{4x}^{\mathrm{2}} \:\:+\:\:\mathrm{6x}\:\:\:−\:\:\mathrm{21}\:\:\:=\:\:\:\mathrm{0},\:\: \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{of}\:\mathrm{its}\:\mathrm{roots}\:\mathrm{is}\:\mathrm{zero} \\ $$ Answered by Frix last updated on 16/May/23 $$\left({x}−{a}\right)\left({x}+{a}\right)\left({x}−{b}\right)\left({x}−{c}\right)=\mathrm{0}…
Question Number 192363 by Red1ight last updated on 15/May/23 $$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}_{{i}} −{x}+\left(\mathrm{2}{cx}−{cb}\right)\left({y}_{{i}} +{cx}^{\mathrm{2}} −{cbx}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{this}\:\mathrm{equaition} \\ $$$$\left.{i}\right)\mathrm{c}>\mathrm{0} \\ $$$$\left.{ii}\right)\mathrm{b}>\mathrm{0} \\ $$$$\left.{iii}\right)\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{real}\:\mathrm{solution} \\ $$…
Question Number 192350 by Abdullahrussell last updated on 15/May/23 Answered by Frix last updated on 15/May/23 $$\mathrm{Just}\:\mathrm{type}\:\mathrm{into}\:\mathrm{a}\:\mathrm{calculator}. \\ $$$$\mathrm{Answer}\:\mathrm{is}\:\frac{\mathrm{5}}{\mathrm{197}} \\ $$$$\mathrm{But}\:\mathrm{can}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{this}? \\ $$$$\frac{\left(\left({x}−\mathrm{5}\right)^{\mathrm{4}} +\mathrm{4}\right)\left(\left({x}−\mathrm{1}\right)^{\mathrm{4}} +\mathrm{4}\right)\left(\left({x}+\mathrm{3}\right)^{\mathrm{4}}…
Question Number 61273 by alphaprime last updated on 31/May/19 $${Suppose}\:\alpha\:,\beta,\gamma,\delta\:{are}\:{real}\:{numbers} \\ $$$${such}\:{that}\:\alpha+\beta+\gamma+\delta\:=\:\alpha^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0} \\ $$$${Prove}\:{that}\:\alpha\left(\alpha+\beta\right)\left(\alpha+\gamma\right)\left(\alpha+\delta\right)=\mathrm{0} \\ $$ Commented by Rasheed.Sindhi last updated…
Question Number 61272 by alphaprime last updated on 31/May/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 61269 by alphaprime last updated on 31/May/19 $${Let}\:{p}\left({x}\right)\:{be}\:{a}\:{quadratic}\:{polynomial}\:{such} \\ $$$${that}\:{for}\:{distinct}\:\alpha\:{and}\:\beta\:, \\ $$$${p}\left(\alpha\right)\:=\:\alpha\:{and}\:{p}\left(\beta\right)\:=\beta \\ $$$${prove}\:{that}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:\:{p}\left[{p}\left({x}\right)\right]−{x}=\mathrm{0}\: \\ $$$${Find}\:{the}\:{remaining}\:{roots}\:. \\ $$ Answered by ajfour last updated…
Question Number 61267 by behi83417@gmail.com last updated on 31/May/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 61268 by alphaprime last updated on 31/May/19 $${Let}\:{a},{b},{c},{d},{e}\:\geqslant\:−\mathrm{1}\:{and}\:{a}+{b}+{c}+{d}+{e}=\mathrm{5} \\ $$$${Find}\:{the}\:{maximum}\:{and}\:{minimum} \\ $$$${value}\:{of}\:{S}\:=\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{d}\right)\left({d}+{e}\right)\left({e}+{a}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 192330 by Shrinava last updated on 14/May/23 Terms of Service Privacy Policy Contact: info@tinkutara.com