Menu Close

Category: Algebra

Solve-for-x-x-1-x-1-2-1-1-x-1-2-x-

Question Number 191675 by MATHEMATICSAM last updated on 28/Apr/23 $$\mathrm{Solve}\:\mathrm{for}\:{x}\:: \\ $$$$\left({x}\:−\:\frac{\mathrm{1}}{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\:\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\:{x} \\ $$ Commented by mehdee42 last updated on 29/Apr/23 $${the}\:{graph}\:{of}\:{the}\:{function}\:{is}\:{as}\:{follows}.{therefore}\:.{the}\:{given}\:\: \\…

nice-calculus-verify-that-A-2-5-1-3-1-5-is-a-rational-number-

Question Number 126109 by mnjuly1970 last updated on 17/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{nice}\:{calculus}… \\ $$$$\:\:{verify}\:\:{that}\:::\:\:\mathrm{A}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}+\sqrt{\mathrm{5}}}}{\mathrm{1}+\sqrt{\mathrm{5}}}\:{is} \\ $$$$\:\:\:\:\:\:{a}\:\:{rational}\:\:{number}\:… \\ $$ Answered by som(math1967) last updated on 17/Dec/20 $$\frac{\sqrt[{\mathrm{3}}]{\mathrm{8}\left(\mathrm{2}+\sqrt{\left.\mathrm{5}\right)}\right.}}{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)×\mathrm{2}} \\…

1-a-b-c-d-2-1-a-1-b-1-c-1-d-abcd-4-

Question Number 126105 by Mathgreat last updated on 17/Dec/20 $$\mathrm{1}\leqslant{a};{b};{c};{d}\leqslant\mathrm{2} \\ $$$$\mid\left(\mathrm{1}−{a}\right)\left(\mathrm{1}−{b}\right)\left(\mathrm{1}−{c}\right)\left(\mathrm{1}−{d}\right)\mid\leqslant\frac{{abcd}}{\mathrm{4}} \\ $$ Commented by Mathgreat last updated on 17/Dec/20 $$\boldsymbol{{prove}} \\ $$ Answered…

Question-191624

Question Number 191624 by Shrinava last updated on 27/Apr/23 Answered by ARUNG_Brandon_MBU last updated on 28/Apr/23 $$\int_{\mathrm{1}} ^{{x}} \sqrt{\frac{{t}}{\mathrm{1}+{t}^{\mathrm{3}} }}{dt} \\ $$$$=\int_{\mathrm{1}} ^{{x}} \frac{{t}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\:\sqrt{\mathrm{1}+\left({t}^{\frac{\mathrm{3}}{\mathrm{2}}}…

Question-191623

Question Number 191623 by Shrinava last updated on 27/Apr/23 Answered by mehdee42 last updated on 27/Apr/23 $${let}\::\:{f}\left({x}\right)={ax}+{b} \\ $$$${f}\left({f}\left({x}\right)\right)+{f}\left({x}\right)=−{x}\:\Rightarrow\left({a}^{\mathrm{2}} +{a}\right){x}+{ab}+\mathrm{2}{b}=−{x}\Rightarrow{a}=\frac{−\mathrm{1}+\sqrt{\mathrm{3}}{i}}{\mathrm{2}}={e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}{i}} \:\:\&\:\:{b}=\mathrm{0}\Rightarrow{f}\left({x}\right)={e}^{\frac{\mathrm{2}\pi}{\mathrm{3}}{i}} {x} \\ $$$${f}\left({f}\left({f}\left(\frac{\mathrm{1}}{\mathrm{2}+{cosx}}\right)\right)\right)=\frac{\mathrm{1}}{\mathrm{2}+{cosx}} \\…