Menu Close

Category: Algebra

If-a-b-3-Find-a-2-b-2-2a-2b-a-2-b-2-4a-4-

Question Number 190392 by Shrinava last updated on 02/Apr/23 $$\mathrm{If}\:\:\:\mathrm{a}\:+\:\mathrm{b}\:=\:\mathrm{3} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{2a}\:−\:\mathrm{2b}}{\mathrm{a}^{\mathrm{2}} \:−\:\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{4a}\:+\:\mathrm{4}} \\ $$ Commented by mokys last updated on 05/Apr/23…

c-6-t-c-3-t-5-

Question Number 59313 by hhghg last updated on 07/May/19 $$\mathrm{c}+\mathrm{6}×\mathrm{t}\:\:\mathrm{c}=\mathrm{3}\:\:\mathrm{t}=\mathrm{5} \\ $$ Answered by tanmay last updated on 07/May/19 $$\mathrm{3}+\mathrm{6}×\mathrm{5} \\ $$$$=\mathrm{3}+\mathrm{30} \\ $$$$=\mathrm{33} \\…

Question-190357

Question Number 190357 by Rupesh123 last updated on 01/Apr/23 Commented by som(math1967) last updated on 02/Apr/23 $$\:\boldsymbol{{p}}=\mathrm{2}^{\mathrm{3}} \sqrt{\boldsymbol{{q}}}\:\:\:\boldsymbol{{or}}\:\boldsymbol{{p}}=\mathrm{2}\sqrt{\mathrm{3}\boldsymbol{{q}}}\:\:? \\ $$ Terms of Service Privacy Policy…

Solve-the-equation-3x-1-2-5-2x-1-2-0-

Question Number 59270 by pete last updated on 07/May/19 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{3x}^{\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{5}−\mathrm{2x}^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{0} \\ $$ Answered by Joel578 last updated on 07/May/19 $$\mathrm{3}\sqrt{{x}}\:+\:\mathrm{5}\:−\:\mathrm{2}\sqrt{{x}}\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:\sqrt{{x}}\:=\:−\mathrm{5} \\…

Question-124797

Question Number 124797 by oustmuchiya@gmail.com last updated on 06/Dec/20 Answered by benjo_mathlover last updated on 06/Dec/20 $$\left.{Q}\mathrm{2}\right)\:\mathrm{2}{p}^{\mathrm{2}} +{p}−\mathrm{10}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{2}{p}+\mathrm{5}\right)\left({p}−\mathrm{2}\right)=\mathrm{0}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{p}=\mathrm{2}\:\Rightarrow\mathrm{3}^{{x}} \:=\:\mathrm{2}\:=\:\mathrm{3}^{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{2}\right)} \\…

Question-190325

Question Number 190325 by Shrinava last updated on 31/Mar/23 Answered by mehdee42 last updated on 31/Mar/23 $${I}=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\frac{\mathrm{2}{tan}\frac{\beta}{\mathrm{2}}{x}}{\alpha{tan}^{\mathrm{2}} \frac{\beta}{\mathrm{2}}{x}+\mathrm{2}{tan}\frac{\beta}{\mathrm{2}}{x}+\alpha}{dx} \\ $$$${if}\:\:{tan}\frac{\beta}{\mathrm{2}}{x}={u}\Rightarrow{I}=\int_{\mathrm{0}} ^{{tan}\frac{\beta}{\mathrm{4}}} \:\frac{\mathrm{4}{du}}{\alpha{u}^{\mathrm{2}} +\mathrm{2}{u}+\alpha}…