Question Number 190038 by Shrinava last updated on 26/Mar/23 $$\mathrm{Find}:\:\:\:\frac{\mathrm{21}\:+\:\sqrt{\mathrm{4a}\:−\:\mathrm{3}}}{\mathrm{4a}\:+\:\sqrt{\mathrm{3}\:−\:\mathrm{4a}}} \\ $$ Answered by Rasheed.Sindhi last updated on 26/Mar/23 $$\mathrm{Find}:\:\:\:\frac{\mathrm{21}\:+\:\sqrt{\mathrm{4a}\:−\:\mathrm{3}}}{\mathrm{4a}\:+\:\sqrt{\mathrm{3}\:−\:\mathrm{4a}}} \\ $$$${Assuming}\:{the}\:{value}\:{is}\:{real} \\ $$$$\Rightarrow \\…
Question Number 58963 by Tony Lin last updated on 02/May/19 $${solve}\:{x}^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}+{i}\right){x}−\mathrm{5}+\mathrm{14}{i}=\mathrm{0} \\ $$ Answered by tanmay last updated on 02/May/19 $${x}^{\mathrm{2}} −\mathrm{2}{x}\left(\mathrm{1}+{i}\right)+\left(\mathrm{1}+{i}\right)^{\mathrm{2}} −\mathrm{5}+\mathrm{14}{i}−\left(\mathrm{1}+{i}\right)^{\mathrm{2}} =\mathrm{0}…
Question Number 190032 by Shrinava last updated on 26/Mar/23 $$\mathrm{x}\:>\:\mathrm{0} \\ $$$$\mathrm{xy}\:−\:\mathrm{18}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2x}\:+\:\mathrm{y}\right)_{\boldsymbol{\mathrm{min}}} \:=\:? \\ $$ Answered by cortano12 last updated on 26/Mar/23 $$\:\mathrm{z}\:=\mathrm{2x}+\frac{\mathrm{18}}{\mathrm{x}}\:=\:\mathrm{2x}+\mathrm{18x}^{−\mathrm{1}}…
Question Number 190035 by Shrinava last updated on 26/Mar/23 $$\mathrm{10}^{\mathrm{93}} \:−\:\mathrm{93} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers} \\ $$ Answered by BaliramKumar last updated on 26/Mar/23 $$\mathrm{999999}…….\mathrm{999999907}\:\:\:\:\:\:\left(\mathrm{93}\:{digits}\right) \\ $$…
Question Number 190034 by Shrinava last updated on 26/Mar/23 $$\mathrm{If}\:\:\:\mathrm{x}\:+\:\frac{\mathrm{2}}{\mathrm{x}}\:=\:\sqrt{\mathrm{17}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\left(\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{4}\right)\left(\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{1}\right)}{\mathrm{x}^{\mathrm{2}} }\:=\:? \\ $$ Answered by BaliramKumar last updated on 26/Mar/23 $${x}^{\mathrm{2}}…
Question Number 124496 by TITA last updated on 03/Dec/20 $${show}\:{that}\:{between}\:\mathrm{2}\:{real}\:{numbers}\:\exists\:{x},{y}\:{s}.{t}\:{x}<\mathrm{0}\:{and}\:{y}>\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 190025 by Shrinava last updated on 26/Mar/23 $$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{3x}^{\mathrm{5}} \:+\:\mathrm{2x}^{\mathrm{2}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{f}\left(\sqrt{\mathrm{2}}\:−\:\mathrm{1}\right)\:+\:\mathrm{f}\left(\mathrm{1}\:−\:\sqrt{\mathrm{2}}\right)\:+\:\mathrm{3} \\ $$ Answered by SEKRET last updated on 26/Mar/23 $$\:\:\:\sqrt{\mathrm{2}\:\:}\:−\mathrm{1}\:=\:\boldsymbol{\mathrm{a}}\:\:\:\:\:\:\:\:\mathrm{1}−\sqrt{\mathrm{2}}\:\:=\:−\boldsymbol{\mathrm{a}} \\ $$$$\:\:\mathrm{3}\boldsymbol{\mathrm{a}}^{\mathrm{5}}…
Question Number 190024 by Shrinava last updated on 26/Mar/23 $$\mathrm{Find}: \\ $$$$\sqrt{\mathrm{4}+\sqrt{\mathrm{2}}}\:\centerdot\:\sqrt{\mathrm{3}+\sqrt{\mathrm{5}+\sqrt{\mathrm{2}}}}\:\centerdot\:\sqrt{\mathrm{3}−\sqrt{\mathrm{5}+\sqrt{\mathrm{2}}}}\:+\:\mid\sqrt{\mathrm{14}}−\mathrm{4}\mid \\ $$ Answered by SEKRET last updated on 26/Mar/23 $$\:\sqrt{\mathrm{4}+\sqrt{\mathrm{2}}\:\:}\:\sqrt{\mathrm{3}^{\mathrm{2}} −\left(\mathrm{5}+\sqrt{\mathrm{2}}\right)}\:\:+\:\mathrm{4}\:−\:\sqrt{\mathrm{14}} \\ $$$$\:\:\:\sqrt{\mathrm{4}+\sqrt{\mathrm{2}}\:}\:\sqrt{\mathrm{4}−\sqrt{\mathrm{2}}\:}\:+\mathrm{4}\:−\:\sqrt{\mathrm{14}}\:…
Question Number 190027 by Shrinava last updated on 26/Mar/23 $$\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:=\:\mathrm{12} \\ $$$$\mathrm{ab}\:=\:\mathrm{4} \\ $$$$\mathrm{Fund}:\:\:\:\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:=\:? \\ $$ Answered by SEKRET last updated…
Question Number 190021 by Shrinava last updated on 26/Mar/23 $$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{H}_{\boldsymbol{\mathrm{n}}} \:\left(\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}\:-\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\mathrm{cot}^{-\mathrm{1}} \:\left(\mathrm{n}+\mathrm{k}\right)\right) \\ $$ Terms of Service Privacy…