Menu Close

Category: Algebra

Question-189473

Question Number 189473 by Spillover last updated on 17/Mar/23 Answered by a.lgnaoui last updated on 17/Mar/23 $${x}=\mathrm{1}\:\:\:{f}\left(\mathrm{1}\right)=\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{3}} =\frac{\mathrm{27}}{\mathrm{64}} \\ $$$${x}=\mathrm{2}\:\:{f}\left(\mathrm{2}\right)=\left(\frac{\mathrm{3}}{\mathrm{8}}\right)^{\mathrm{2}} =\frac{\mathrm{9}}{\mathrm{64}} \\ $$$${x}=\mathrm{3}\:\:{f}\left(\mathrm{3}\right)=\left(\frac{\mathrm{3}}{\mathrm{12}}\right)^{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{16}}{\mathrm{64}} \\…

The-imaginary-part-of-1-2-1-2-i-10-is-

Question Number 58402 by rahul 19 last updated on 22/Apr/19 $${The}\:{imaginary}\:{part}\:{of}\:\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{i}\right)^{\mathrm{10}} {is}\:? \\ $$ Commented by maxmathsup by imad last updated on 23/Apr/19 $${let}\:{Z}\:=\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{i}\right)^{\mathrm{10}} \:\Rightarrow{Z}\:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{10}}…

write-without-roots-in-denominator-if-possible-1-1-a-2-1-a-b-3-1-a-b-c-4-1-a-b-c-d-5-1-a-b-c-d-e-

Question Number 58390 by MJS last updated on 22/Apr/19 $$\mathrm{write}\:\mathrm{without}\:\mathrm{roots}\:\mathrm{in}\:\mathrm{denominator}\:\mathrm{if}\:\mathrm{possible} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{\:\sqrt{{a}}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}}{\:\sqrt{{a}}+\sqrt{{b}}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{1}}{\:\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{1}}{\:\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}+\sqrt{{d}}} \\ $$$$\left(\mathrm{5}\right)\:\frac{\mathrm{1}}{\:\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}+\sqrt{{d}}+\sqrt{{e}}} \\ $$ Commented by tanmay…

Question-123894

Question Number 123894 by john_santu last updated on 29/Nov/20 Answered by mr W last updated on 29/Nov/20 $${nn}!=\left({n}+\mathrm{1}\right){n}!−{n}!=\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$\Rightarrow{a}_{{n}} =\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$$$\frac{{n}}{\left({n}+\mathrm{1}\right)!}=\frac{{n}+\mathrm{1}}{\left({n}+\mathrm{1}\right)!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}=\frac{\mathrm{1}}{{n}!}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\Rightarrow{b}_{{n}}…

Let-l-z-lz-m-0-be-a-straight-line-in-the-complex-plane-and-P-z-0-be-a-point-in-the-plane-Then-the-equation-of-the-line-passing-through-P-z-0-and-perpendicular-to-the-given-line-is-

Question Number 123886 by Ar Brandon last updated on 29/Nov/20 $$\mathrm{Let}\:\overset{−} {{l}z}+{l}\overset{−} {{z}}+{m}=\mathrm{0}\:\mathrm{be}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:\mathrm{in}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{plane} \\ $$$$\mathrm{and}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{passing}\:\mathrm{through}\:{P}\left({z}_{\mathrm{0}} \right)\:\mathrm{and}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{given}\:\mathrm{line}\:\mathrm{is}\:\_\_\_ \\ $$ Answered by…

Question-189417

Question Number 189417 by sonukgindia last updated on 16/Mar/23 Answered by mehdee42 last updated on 16/Mar/23 $$\left(\mathrm{2}^{\mathrm{3141}} \right)^{\mathrm{2}} +\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} +\left(\mathrm{2}^{\mathrm{1618}} \right)^{\mathrm{2}} =\left(\mathrm{2}^{{a}} +\mathrm{2}^{{b}} \right)^{\mathrm{2}}…

determiner-l-heure-de-depart-par-un-auto-qui-part-pour-rejiindre-la-gare-B-juste-a-l-arrivee-du-train-partant-a-7h-de-la-ville-A-vers-la-ville-B-a-vitesse-de-180km-h-

Question Number 189407 by a.lgnaoui last updated on 15/Mar/23 $${determiner}\:{l}\:{heure}\:{de}\: \\ $$$${depart}\:{par}\:\:{un}\:{auto}\:{qui}\: \\ $$$${part}\:{pour}\:{rejiindre}\:{la} \\ $$$${gare}\:\:{B}\:{juste}\:{a}\:{l}'\:{arrivee} \\ $$$${du}\:{train}\:\:{partant}\:{a}\:\mathrm{7}{h},{de}\:{la}\:{ville}\:{A} \\ $$$${vers}\:{la}\:{ville}\:{B}\:{a}\:{vitesse}\:{de}\: \\ $$$$\mathrm{180}{km}/{h}.? \\ $$$$ \\…