Menu Close

Category: Algebra

Question-187811

Question Number 187811 by Rupesh123 last updated on 22/Feb/23 Answered by Frix last updated on 22/Feb/23 $${x}^{\mathrm{6}} +\frac{{x}^{\mathrm{5}} }{\mathrm{2}}−\frac{\mathrm{5}{x}^{\mathrm{4}} }{\mathrm{4}}−\frac{\mathrm{5}{x}^{\mathrm{3}} }{\mathrm{8}}+\frac{\mathrm{5}{x}^{\mathrm{2}} }{\mathrm{16}}+\frac{\mathrm{5}{x}}{\mathrm{32}}+\frac{\mathrm{1}}{\mathrm{64}}=\mathrm{0} \\ $$$$\mathrm{Try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{2}\:\mathrm{cubic}\:\mathrm{factors}.\:\mathrm{If}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible} \\…

solve-1-4-2-x-1-2-2-x-1-1-

Question Number 187780 by mnjuly1970 last updated on 21/Feb/23 $$ \\ $$$$\:\:{solve} \\ $$$$\:\:\:\:\lfloor\:\:\frac{\mathrm{1}}{\mathrm{4}\:}\:+\:\mathrm{2}^{\:{x}} \:\rfloor\:+\:\lfloor\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{2}^{\:{x}+\mathrm{1}} \:\rfloor=\mathrm{1} \\ $$$$ \\ $$ Answered by witcher3 last updated…

Find-the-perpendicular-distance-from-1-7-1-to-3x-2y-2z-6-

Question Number 56696 by Tawa1 last updated on 21/Mar/19 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{perpendicular}\:\mathrm{distance}\:\mathrm{from}\:\:\left(\mathrm{1},\:\mathrm{7},\:\mathrm{1}\right)\:\:\mathrm{to}\:\:\mathrm{3x}\:−\:\mathrm{2y}\:+\:\mathrm{2z}\:\:=\:\:\mathrm{6} \\ $$ Commented by mr W last updated on 21/Mar/19 $${d}=\frac{\mid\mathrm{3}×\mathrm{1}−\mathrm{2}×\mathrm{7}+\mathrm{2}×\mathrm{1}−\mathrm{6}\mid}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }}=\frac{\mathrm{15}}{\:\sqrt{\mathrm{17}}} \\…

Find-the-shortest-distance-between-the-lines-L-1-4-2-N-1-3-2-and-r-1-1-1-1-2-1-

Question Number 56697 by Tawa1 last updated on 21/Mar/19 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\:\:\:\mathrm{L}\:\:=\:\:\left(\mathrm{1},\:\mathrm{4},\:\mathrm{2}\right)\:+\:\mathrm{N}\left(\mathrm{1},\:\mathrm{3},\:\mathrm{2}\right)\:\:\:\mathrm{and} \\ $$$$\:\:\:\mathrm{r}\:\:=\:\:\left(−\mathrm{1},\:\mathrm{1},\:−\mathrm{1}\right)\:+\:\lambda\left(\mathrm{1},\:\mathrm{2},\:−\mathrm{1}\right) \\ $$ Answered by mr W last updated on 21/Mar/19 $${many}\:{methods}\:{to}\:{solve}.…

Question-122214

Question Number 122214 by peter frank last updated on 14/Nov/20 Answered by floor(10²Eta[1]) last updated on 14/Nov/20 $$\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{has}\:\mathrm{a}\:\mathrm{repeated}\:\mathrm{root}\:\mathrm{so}\:\mathrm{f}'\left(\mathrm{x}\right)\:\mathrm{has}\:\mathrm{that}\:\mathrm{root} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{54x}^{\mathrm{2}} +\mathrm{6x}−\mathrm{88}=\mathrm{0}=\mathrm{27x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{44} \\ $$$$\mathrm{x}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}.\mathrm{44}.\mathrm{3}}}{\mathrm{18}}=\frac{−\mathrm{1}\pm\mathrm{23}}{\mathrm{18}} \\…