Question Number 186582 by ajfour last updated on 06/Feb/23 $$\left(\frac{\mathrm{10}{x}^{\mathrm{3}} −{c}}{\mathrm{4}{x}^{\mathrm{4}} −{x}+\mathrm{1}}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} ={x}\left({x}^{\mathrm{3}} +\mathrm{1}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 121041 by bramlexs22 last updated on 05/Nov/20 $$\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\left(−\mathrm{1}\right)^{\mathrm{k}} .\mathrm{k}\:=?\: \\ $$ Answered by Dwaipayan Shikari last updated on 05/Nov/20 $$−\mathrm{1}+\mathrm{2}−\mathrm{3}+\mathrm{4}−\mathrm{5}+\mathrm{6}−\mathrm{7}+\mathrm{8}−…=\frac{{n}}{\mathrm{2}} \\…
Question Number 186572 by mustafazaheen last updated on 06/Feb/23 $${f}=\left\{\left(\mathrm{1},\mathrm{2}\right),\left(\mathrm{4},\mathrm{6}\right),\left(\mathrm{5},\mathrm{8}\right)\right\}\:\:{and}\:\:\:{g}=\left\{\left(\mathrm{1},\mathrm{7}\right),\left(\mathrm{2},\mathrm{4}\right),\left(\mathrm{5},\mathrm{8}\right)\right\} \\ $$$${the}\:{domain}\:{of}\:\:\:{f}\left({g}\left({x}\right)\right)\:\:\:{which}\:{number}\:{is}\:{not}\:{include}? \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{1}\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\right){all}\:{corect} \\ $$$${how}\:{is}\:{the}\:{solution}? \\ $$ Answered by ARUNG_Brandon_MBU last updated on 06/Feb/23…
Question Number 186571 by ajfour last updated on 06/Feb/23 $${If}\:\:\:{x}=−\frac{\mathrm{1}}{\left(\mathrm{1}+{m}\right)}\left(\frac{\mathrm{2}}{\mathrm{3}}\pm\sqrt{\frac{\mathrm{4}}{\mathrm{9}}\pm\frac{{ia}\sqrt{{m}}}{\mathrm{12}}}\right) \\ $$$${where}\:\:\:\left(\mathrm{1}+{m}\right)^{\mathrm{2}} ={am} \\ $$$$\:\:\:\:{and}\:{that}\:\:\mathrm{9}{a}\left({a}+\mathrm{16}\right)^{\mathrm{2}} =\left(\mathrm{16}\right)^{\mathrm{3}} \\ $$$${Find}\:{real}\:{x}. \\ $$ Answered by ajfour last updated…
Question Number 55501 by ajfour last updated on 25/Feb/19 $${Roots}\:{of}\:{x}^{\mathrm{3}} +{px}+{q}=\mathrm{0} \\ $$$${are}\:\:{x}\:=\:{u}+{v} \\ $$$${u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:{are}\:{roots}\:{of} \\ $$$$\:\:\:\:\:\:\:{z}^{\mathrm{2}} −\alpha^{\mathrm{3}} {z}+\beta^{\mathrm{6}} =\mathrm{0} \\ $$$$\:\:\:\frac{{d}^{\mathrm{2}} \left({y}/{x}\right)}{{dx}^{\mathrm{2}}…
Question Number 55482 by pooja24 last updated on 25/Feb/19 $${A}\:{group}\:{of}\:{n}\:{students}\:{are}\:{numbered} \\ $$$${continously}\:{from}\:{first}\:{sdtudent}\:{as}\:\mathrm{1},\mathrm{2},\mathrm{3},…… \\ $$$${If}\:\mathrm{1101}\:{digits}\:{had}\:{to}\:{be}\:{used}\:{in}\:{all},{what}\:{is}\:{the}\: \\ $$$${number}\:{of}\:{students}\:{in}\:{the}\:{group} \\ $$ Answered by mr W last updated on…
Question Number 186544 by ajfour last updated on 05/Feb/23 Commented by ajfour last updated on 05/Feb/23 $${If}\:{the}\:{cubic}\:{curve}\:{is}\:\:{y}={x}^{\mathrm{3}} −{x}−{c} \\ $$$${with},\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\:\:;\:{and}\: \\ $$$${the}\:{parabola}\:{be}\:\:{y}=\left({x}−{h}\right)^{\mathrm{2}} \\ $$$${Then}\:{find}\:{h}. \\…
Question Number 186540 by akuba last updated on 05/Feb/23 $${Complex}\:{Numbers} \\ $$$${Prove}\:{that} \\ $$$$\:\mathrm{1}.\:\mid{Z}_{\mathrm{1}} +{Z}_{\mathrm{2}} \mid\leq\mid{Z}_{\mathrm{1}} \mid+\mid{Z}_{\mathrm{2}} \mid \\ $$$$\mathrm{2}.\:\mid{Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \mid\geq\mid{Z}_{\mathrm{1}} \mid−\mid{Z}_{\mathrm{2}} \mid \\…
Question Number 120993 by MariaMar last updated on 04/Nov/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 120984 by pooooop last updated on 04/Nov/20 $$\frac{\mathrm{1}}{\mathrm{1}\centerdot\mathrm{4}\centerdot\mathrm{7}}\:+\:\frac{\mathrm{1}}{\mathrm{4}\centerdot\mathrm{7}\centerdot\mathrm{10}}+\frac{\mathrm{1}}{\mathrm{7}\centerdot\mathrm{10}\centerdot\mathrm{13}}+…+\frac{\mathrm{1}}{\mathrm{25}\centerdot\mathrm{28}\centerdot\mathrm{31}}=\:? \\ $$ Answered by Dwaipayan Shikari last updated on 04/Nov/20 $${T}_{{n}} =\frac{\mathrm{1}}{\left(\mathrm{3}{n}−\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{4}\right)} \\ $$$$\overset{{n}} {\sum}{T}_{{n}}…