Question Number 120809 by liberty last updated on 02/Nov/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{number}\:\mathrm{of}\:\mathrm{positive} \\ $$$$\mathrm{integers}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{found}\:\mathrm{in}\:\mathrm{such}\:\mathrm{a}\:\mathrm{way} \\ $$$$\mathrm{that}\:\mathrm{any}\:\mathrm{two}\:\mathrm{of}\:\mathrm{them}\:{a}\:\mathrm{and}\:{b}\:\left(\:{a}\neq{b}\right)\: \\ $$$$\mathrm{satisfy}\:\mathrm{the}\:\mathrm{next}\:\mathrm{inequality}\:\mid{a}−{b}\mid\geqslant\frac{{ab}}{\mathrm{100}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 186329 by ajfour last updated on 03/Feb/23 Answered by ajfour last updated on 03/Feb/23 $${Cubic}\:{curve}:\:{y}={x}^{\mathrm{3}} −{x} \\ $$$${Parabola}:\:\:{x}={h}+\left({y}−{k}\right)^{\mathrm{2}} \\ $$$${x}={h}+\left({p}−{k}\right)^{\mathrm{2}} \\ $$$${p}^{\mathrm{3}} −{p}={c}…
Question Number 55258 by 7008984239 last updated on 20/Feb/19 $$\mathrm{3}{x}+\mathrm{5}{y}=?_{} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 186330 by Rupesh123 last updated on 03/Feb/23 Commented by MJS_new last updated on 03/Feb/23 $$\mathrm{2} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 120780 by mathace last updated on 02/Nov/20 $${solve}\:{x}^{\mathrm{2}^{{x}} } =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Commented by Anuragkar last updated on 02/Nov/20 $${Use}\:\:{Lambert}\:{W}\:{function}\:{to}\:{work}\:{it}\:{out}…… \\ $$ Commented…
Question Number 186305 by mustafazaheen last updated on 03/Feb/23 $$\mathrm{log}\:\left(\frac{\mathrm{3}.\bar {\mathrm{2}}}{\mathrm{3}.\bar {\mathrm{1}}}\right)\:\:\:\:\:\:\:{find}\:\mathrm{Characteristic}? \\ $$ Commented by MJS_new last updated on 03/Feb/23 $$\frac{\mathrm{3}+\frac{\mathrm{2}}{\mathrm{9}}}{\mathrm{3}+\frac{\mathrm{1}}{\mathrm{9}}}=\frac{\mathrm{29}}{\mathrm{28}}=\frac{\mathrm{29}}{\mathrm{2}^{\mathrm{2}} \mathrm{7}} \\ $$$$\mathrm{log}\:\frac{\mathrm{29}}{\mathrm{2}^{\mathrm{2}}…
Question Number 186300 by mnjuly1970 last updated on 03/Feb/23 $$\:\:\: \\ $$$$\:\:\:\:\:\mathrm{solve}\:\:\mathrm{in}\:\:\:\mathbb{R} \\ $$$$ \\ $$$$\:\:\:\lfloor\:\:\mathrm{2log}_{\:\mathrm{8}} \left({x}\right)\:+\:\frac{\mathrm{1}}{\mathrm{3}}\:\rfloor\:=\:\mathrm{log}_{\:\mathrm{4}} \left({x}\:\right)+\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$ Answered by MJS_new…
Question Number 186292 by ajfour last updated on 03/Feb/23 $$\left({x}−{p}\right)\left({x}^{\mathrm{3}} −{x}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} −{px}^{\mathrm{3}} −{x}^{\mathrm{2}} +\left({p}−\frac{\mathrm{1}}{\mathrm{3}}\right){x}+\frac{{p}}{\mathrm{3}}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} +{ax}+{h}\right)\left({x}^{\mathrm{2}} +{bx}+{k}\right)=\mathrm{0} \\ $$$${a}+{b}=−{p} \\ $$$${h}+{k}+{ab}=−\mathrm{1} \\…
Question Number 186285 by Shrinava last updated on 03/Feb/23 $$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{R}\:\left(\mathrm{m}\:,\:\mathrm{n}\right)\:\leqslant\:\mathrm{C}_{\boldsymbol{\mathrm{m}}+\boldsymbol{\mathrm{n}}} ^{\boldsymbol{\mathrm{m}}} \\ $$$$\mathrm{Here}\:\:\mathrm{R}\:\:\mathrm{states}\:\mathrm{the}\:\:\mathrm{Ramsey}\:\:\mathrm{theory} \\ $$ Commented by mr W last updated on 03/Feb/23…
Question Number 55198 by ajfour last updated on 19/Feb/19 $${x}^{\mathrm{5}} −\mathrm{4}{x}^{\mathrm{4}} +\mathrm{6}{x}^{\mathrm{3}} +\mathrm{8}{x}−\mathrm{32}=\mathrm{0} \\ $$$${Find}\:{at}\:{least}\:{one}\:{root}. \\ $$ Commented by arvinddayama00@gmail.com last updated on 19/Feb/19 $${all}\:{velue}\:{of}\:{x}=?…