Menu Close

Category: Algebra

If-k-gt-0-and-f-x-x-x-Find-f-2-7-k-f-2k-

Question Number 185693 by Shrinava last updated on 25/Jan/23 $$\mathrm{If}\:\:\:\mathrm{k}\:>\:\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{x}}{\mid\mathrm{x}\mid} \\ $$$$\mathrm{Find}\:\:\:\mathrm{f}\left(-\:\frac{\mathrm{2}}{\mathrm{7}}\:\mathrm{k}\right)\:+\:\mathrm{f}\left(\:-\:\mathrm{2k}\right)\:=\:? \\ $$ Commented by Shrinava last updated on 25/Jan/23 $$\left.\mathrm{a}\left.\right)\left.\mathrm{2}\left.,\left.\mathrm{5}\:\:\:\mathrm{b}\right)\mathrm{3},\mathrm{5}\:\:\:\mathrm{c}\right)\mathrm{4},\mathrm{5}\:\:\:\mathrm{d}\right)\mathrm{3}\:\:\:\mathrm{e}\right)\mathrm{4} \\ $$ Answered…

If-u-and-v-are-vectors-in-R-3-then-prove-that-u-v-1-4-u-v-2-1-4-u-v-2-

Question Number 185695 by Spillover last updated on 25/Jan/23 $${If}\:\overset{\rightarrow} {{u}}\:{and}\:\overset{\rightarrow} {{v}}\:{are}\:{vectors}\:{in}\:\mathbb{R}^{\mathrm{3}} \\ $$$${then}\:{prove}\:{that}\: \\ $$$$\overset{\rightarrow} {{u}}.\overset{\rightarrow} {{v}}=\frac{\mathrm{1}}{\mathrm{4}}\parallel\overset{\rightarrow} {{u}}+\overset{\rightarrow} {{v}}\parallel^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\parallel\overset{\rightarrow} {{u}}−\overset{\rightarrow} {{v}}\parallel^{\mathrm{2}} \\ $$…

Given-u-2-3-1-and-v-7-1-4-verify-cauchy-schwartz-inequarity-and-triangle-inequarty-

Question Number 185692 by Spillover last updated on 25/Jan/23 $${Given}\: \\ $$$$\overset{\rightarrow} {{u}}=\left(−\mathrm{2},\mathrm{3},\mathrm{1}\right)\:\:{and}\:\overset{\rightarrow} {{v}}=\left(\mathrm{7},\mathrm{1},−\mathrm{4}\right) \\ $$$${verify}\:{cauchy}−{schwartz}\: \\ $$$${inequarity}\:{and}\:{triangle}\:{inequarty} \\ $$ Terms of Service Privacy Policy…

Show-that-the-set-V-R-3-with-standard-vector-addition-and-multiplication-defined-as-c-u-1-u-2-u-3-0-0-cu-3-

Question Number 185694 by Spillover last updated on 25/Jan/23 $${Show}\:{that}\:{the}\:{set}\:{V}=\mathbb{R}^{\mathrm{3}} \:{with} \\ $$$${standard}\:{vector}\:{addition}\:{and} \\ $$$${multiplication}\:{defined}\:{as} \\ $$$${c}\left({u}_{\mathrm{1}} ,{u}_{\mathrm{2}} ,{u}_{\mathrm{3}} \right)=\left(\mathrm{0},\mathrm{0},{cu}_{\mathrm{3}} \right) \\ $$ Terms of…

Determinate-and-construct-the-set-of-points-M-which-have-as-affix-z-in-each-case-1-arg-i-z-0-pi-2-arg-z-1-i-pi-6-2pi-

Question Number 120152 by mathocean1 last updated on 29/Oct/20 $$\mathrm{Determinate}\:\mathrm{and}\:\mathrm{construct}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{points}\:\mathrm{M} \\ $$$$\mathrm{which}\:\mathrm{have}\:\mathrm{as}\:\mathrm{affix}\:\mathrm{z}\:\:\mathrm{in}\:\mathrm{each}\:\mathrm{case}: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{arg}\left(\mathrm{i}−\mathrm{z}\right)=\mathrm{0}\left[\pi\right] \\ $$$$\left.\mathrm{2}\right)\:\mathrm{arg}\left(\mathrm{z}+\mathrm{1}−\mathrm{i}\right)=\frac{\pi}{\mathrm{6}}\left[\mathrm{2}\pi\right] \\ $$$$ \\ $$ Terms of Service Privacy Policy…

Represent-in-complex-plane-the-set-of-points-M-which-have-as-affix-z-such-that-z-2-and-arg-z-1-pi-4-pi-

Question Number 120151 by mathocean1 last updated on 29/Oct/20 $$\mathrm{Represent}\:\mathrm{in}\:\mathrm{complex}\:\mathrm{plane}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{points} \\ $$$$\mathrm{M}\:\mathrm{which}\:\mathrm{have}\:\mathrm{as}\:\mathrm{affix}\:\mathrm{z}\:\mathrm{such}\:\mathrm{that}\:\mid\mathrm{z}\mid=\mathrm{2}\:\mathrm{and} \\ $$$$\mathrm{arg}\left(\mathrm{z}+\mathrm{1}\right)=\frac{\pi}{\mathrm{4}}\left[\pi\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

17-78-143-353-a-366-b-0-c-398-d-435-

Question Number 185684 by Shrinava last updated on 25/Jan/23 $$\mathrm{17}\:,\:\mathrm{78},\:\mathrm{143},\:\mathrm{353},\:? \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{3}\left.\mathrm{66}\:\:\:\:\:\mathrm{b}\right)\mathrm{0}\:\:\:\:\:\mathrm{c}\right)\mathrm{398}\:\:\:\:\:\mathrm{d}\right)\mathrm{435} \\ $$ Commented by Frix last updated on 25/Jan/23 $$\mathrm{42} \\ $$$$\left(\mathrm{Try}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}…\right) \\…

Question-185673

Question Number 185673 by Mingma last updated on 25/Jan/23 Answered by Frix last updated on 25/Jan/23 $$\mathrm{Due}\:\mathrm{to}\:\mathrm{symmetry}\:{x}={y}={z}=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{27}} \\ $$ Terms of Service Privacy…