Question Number 185706 by Shrinava last updated on 26/Jan/23 $$\mathrm{if}\:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{find}:\:\:\:\:\:\mathrm{x}^{\mathrm{2011}} \:+\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2011}} }\:=\:? \\ $$ Answered by Rajpurohith last updated on 26/Jan/23 Answered…
Question Number 185693 by Shrinava last updated on 25/Jan/23 $$\mathrm{If}\:\:\:\mathrm{k}\:>\:\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{x}}{\mid\mathrm{x}\mid} \\ $$$$\mathrm{Find}\:\:\:\mathrm{f}\left(-\:\frac{\mathrm{2}}{\mathrm{7}}\:\mathrm{k}\right)\:+\:\mathrm{f}\left(\:-\:\mathrm{2k}\right)\:=\:? \\ $$ Commented by Shrinava last updated on 25/Jan/23 $$\left.\mathrm{a}\left.\right)\left.\mathrm{2}\left.,\left.\mathrm{5}\:\:\:\mathrm{b}\right)\mathrm{3},\mathrm{5}\:\:\:\mathrm{c}\right)\mathrm{4},\mathrm{5}\:\:\:\mathrm{d}\right)\mathrm{3}\:\:\:\mathrm{e}\right)\mathrm{4} \\ $$ Answered…
Question Number 185695 by Spillover last updated on 25/Jan/23 $${If}\:\overset{\rightarrow} {{u}}\:{and}\:\overset{\rightarrow} {{v}}\:{are}\:{vectors}\:{in}\:\mathbb{R}^{\mathrm{3}} \\ $$$${then}\:{prove}\:{that}\: \\ $$$$\overset{\rightarrow} {{u}}.\overset{\rightarrow} {{v}}=\frac{\mathrm{1}}{\mathrm{4}}\parallel\overset{\rightarrow} {{u}}+\overset{\rightarrow} {{v}}\parallel^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\parallel\overset{\rightarrow} {{u}}−\overset{\rightarrow} {{v}}\parallel^{\mathrm{2}} \\ $$…
Question Number 185692 by Spillover last updated on 25/Jan/23 $${Given}\: \\ $$$$\overset{\rightarrow} {{u}}=\left(−\mathrm{2},\mathrm{3},\mathrm{1}\right)\:\:{and}\:\overset{\rightarrow} {{v}}=\left(\mathrm{7},\mathrm{1},−\mathrm{4}\right) \\ $$$${verify}\:{cauchy}−{schwartz}\: \\ $$$${inequarity}\:{and}\:{triangle}\:{inequarty} \\ $$ Terms of Service Privacy Policy…
Question Number 185694 by Spillover last updated on 25/Jan/23 $${Show}\:{that}\:{the}\:{set}\:{V}=\mathbb{R}^{\mathrm{3}} \:{with} \\ $$$${standard}\:{vector}\:{addition}\:{and} \\ $$$${multiplication}\:{defined}\:{as} \\ $$$${c}\left({u}_{\mathrm{1}} ,{u}_{\mathrm{2}} ,{u}_{\mathrm{3}} \right)=\left(\mathrm{0},\mathrm{0},{cu}_{\mathrm{3}} \right) \\ $$ Terms of…
Question Number 120152 by mathocean1 last updated on 29/Oct/20 $$\mathrm{Determinate}\:\mathrm{and}\:\mathrm{construct}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{points}\:\mathrm{M} \\ $$$$\mathrm{which}\:\mathrm{have}\:\mathrm{as}\:\mathrm{affix}\:\mathrm{z}\:\:\mathrm{in}\:\mathrm{each}\:\mathrm{case}: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{arg}\left(\mathrm{i}−\mathrm{z}\right)=\mathrm{0}\left[\pi\right] \\ $$$$\left.\mathrm{2}\right)\:\mathrm{arg}\left(\mathrm{z}+\mathrm{1}−\mathrm{i}\right)=\frac{\pi}{\mathrm{6}}\left[\mathrm{2}\pi\right] \\ $$$$ \\ $$ Terms of Service Privacy Policy…
Question Number 120154 by mathace last updated on 29/Oct/20 $${solve}\:{using}\:{LambertW}\:{function} \\ $$$$\left(\frac{\mathrm{8}}{\mathrm{7}}\right)^{{x}} +\mathrm{17}=\mathrm{25}{x} \\ $$ Answered by mr W last updated on 29/Oct/20 $$\left(\frac{\mathrm{8}}{\mathrm{7}}\right)^{{x}} =\mathrm{25}\left({x}−\frac{\mathrm{17}}{\mathrm{25}}\right)…
Question Number 120151 by mathocean1 last updated on 29/Oct/20 $$\mathrm{Represent}\:\mathrm{in}\:\mathrm{complex}\:\mathrm{plane}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{points} \\ $$$$\mathrm{M}\:\mathrm{which}\:\mathrm{have}\:\mathrm{as}\:\mathrm{affix}\:\mathrm{z}\:\mathrm{such}\:\mathrm{that}\:\mid\mathrm{z}\mid=\mathrm{2}\:\mathrm{and} \\ $$$$\mathrm{arg}\left(\mathrm{z}+\mathrm{1}\right)=\frac{\pi}{\mathrm{4}}\left[\pi\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 185684 by Shrinava last updated on 25/Jan/23 $$\mathrm{17}\:,\:\mathrm{78},\:\mathrm{143},\:\mathrm{353},\:? \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{3}\left.\mathrm{66}\:\:\:\:\:\mathrm{b}\right)\mathrm{0}\:\:\:\:\:\mathrm{c}\right)\mathrm{398}\:\:\:\:\:\mathrm{d}\right)\mathrm{435} \\ $$ Commented by Frix last updated on 25/Jan/23 $$\mathrm{42} \\ $$$$\left(\mathrm{Try}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}…\right) \\…
Question Number 185673 by Mingma last updated on 25/Jan/23 Answered by Frix last updated on 25/Jan/23 $$\mathrm{Due}\:\mathrm{to}\:\mathrm{symmetry}\:{x}={y}={z}=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{27}} \\ $$ Terms of Service Privacy…