Question Number 54562 by Meritguide1234 last updated on 06/Feb/19 Answered by JDamian last updated on 07/Feb/19 $$\sqrt{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{4}\sqrt{\mathrm{9}\sqrt{\mathrm{3}}−\mathrm{15}}} \\ $$$$\sqrt{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{4}\sqrt{\mathrm{3}\left(\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{5}\right)}} \\ $$$$\sqrt{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{2}×\mathrm{2}\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{5}}} \\ $$$$\sqrt{\mathrm{12}+\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{5}+\mathrm{2}×\mathrm{2}\sqrt{\mathrm{3}}×\sqrt{\mathrm{3}\sqrt{\mathrm{3}}−\mathrm{5}}} \\ $$$$…
Question Number 185624 by mathlove last updated on 24/Jan/23 Answered by MJS_new last updated on 24/Jan/23 $${a}_{\mathrm{1}} =\mathrm{3}^{\mathrm{1}/\mathrm{2}} \\ $$$${a}_{\mathrm{2}} =\left(\mathrm{3}^{\mathrm{1}/\mathrm{2}} \right)^{\mathrm{2}/\mathrm{3}} =\mathrm{3}^{\mathrm{1}/\mathrm{3}} \\ $$$${a}_{\mathrm{3}}…
Question Number 54543 by Tawa1 last updated on 05/Feb/19 $$\mathrm{Prove}\:\mathrm{that}:\:\:\:\frac{\mathrm{z}^{\mathrm{2}} \:−\:\mathrm{1}}{\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{1}}\:\:=\:\:\mathrm{i}\:\mathrm{tan}\left(\theta\right) \\ $$$$\mathrm{where}\:\:\:\:\:\mathrm{z}\:\:=\:\:\mathrm{cos}\left(\theta\right)\:+\:\mathrm{i}\:\mathrm{sin}\left(\theta\right) \\ $$ Commented by maxmathsup by imad last updated on 06/Feb/19…
Question Number 185599 by mathlove last updated on 24/Jan/23 $${x}!={x}^{\mathrm{3}} −{x}\:\:\:\:\:\:\:\:\:\:{faind}\:{x}=? \\ $$ Commented by liuxinnan last updated on 24/Jan/23 $$\mathrm{5}!=\mathrm{120} \\ $$$$\mathrm{5}^{\mathrm{3}} −\mathrm{5}=\mathrm{120} \\…
Question Number 185598 by Mingma last updated on 24/Jan/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 185580 by Shrinava last updated on 23/Jan/23 Answered by JDamian last updated on 24/Jan/23 $${S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}\:\centerdot\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{m}^{{n}−{k}} \right] \\ $$$$\:\:\:=\underset{{k}=\mathrm{1}} {\overset{{n}}…
Question Number 120036 by I want to learn more last updated on 28/Oct/20 Answered by bemath last updated on 28/Oct/20 $$\Rightarrow{gradient}\:=\:\frac{{dy}}{{dx}} \\ $$$$\Rightarrow\mathrm{3}=\mathrm{4}{x}+\mathrm{5}\:;\:\begin{cases}{{x}=−\frac{\mathrm{1}}{\mathrm{2}}}\\{{y}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{5}}{\mathrm{2}}+\mathrm{1}=−\mathrm{1}}\end{cases} \\ $$$${Thus}\:{equation}\:{of}\:{tangent}\:{to}\:{curve}…
Question Number 120035 by I want to learn more last updated on 28/Oct/20 Answered by ebi last updated on 29/Oct/20 $${y}=\mathrm{2}{x}−\mathrm{12}……\left(\mathrm{1}\right) \\ $$$${y}={px}^{\mathrm{2}} −\mathrm{4}{px}−\mathrm{5}{p}……\left(\mathrm{2}\right) \\…
Question Number 54473 by Tawa1 last updated on 04/Feb/19 $$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\mathrm{2}^{\mathrm{2x}\:−\:\mathrm{4}} \:\:=\:\:\mathrm{x}^{\mathrm{2}} \\ $$ Answered by mr W last updated on 04/Feb/19 $$\left(\mathrm{2}^{{x}−\mathrm{2}} \right)^{\mathrm{2}} ={x}^{\mathrm{2}} \\…
Question Number 185542 by mathlove last updated on 23/Jan/23 Answered by Ar Brandon last updated on 23/Jan/23 $${u}_{{n}} =\mathrm{3},\:\mathrm{6},\:\mathrm{10},\:\mathrm{15},\:\mathrm{21},…\:{d}_{\mathrm{0}} =\mathrm{3} \\ $$$$\Delta{u}_{{n}} =\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:\mathrm{6},…\:{d}_{\mathrm{1}} =\mathrm{3} \\…